

- LLM과 유사하게 실험에 따르면 간단한 자동 회귀 훈련 모델도 상황 학습자가 될 수 있으며 즉각적인 조정은 LLM의 상황 학습을 개선하는 데 중요하며 특정 환경에서도 성능을 향상할 수 있습니다.
- Attention 레이어가 내부 목적 함수를 암시적으로 최적화하려고 한다는 발견에서 영감을 받아 저자는 단일 그래디언트 단계를 수행하는 대신 최소 제곱 최적화 문제를 효과적으로 해결할 수 있는 새로운 유형의 Attention 레이어인 메사 레이어를 소개합니다. 최적성을 달성하기 위해. 실험에 따르면 단일 메사 레이어는 간단한 순차 작업에서 심층 선형 및 소프트맥스 셀프 어텐션 트랜스포머보다 성능이 뛰어나면서도 더 많은 해석 가능성을 제공하는 것으로 나타났습니다.
- 예비 언어 모델링 실험 후, 표준 self-attention 레이어를 메사 레이어로 대체하여 유망한 결과를 얻었으며 이 레이어가 강력한 상황별 학습 기능을 가지고 있음을 입증했습니다.
상황에 맞게 소규모 작업을 해결하도록 명시적으로 훈련된 변환기가 경사하강법(GD) 알고리즘을 구현할 수 있음을 보여주는 최근 연구를 기반으로 합니다. 여기에서 저자는 이러한 결과가 LLM 교육에 대한 일반적인 접근 방식인 자동 회귀 시퀀스 모델링으로 일반화됨을 보여줍니다.
먼저 각 시퀀스가 서로 다른 W*에 의해 생성되는 단순 선형 역학에 대해 훈련된 변환기를 분석하여 교차 시퀀스 기억을 방지합니다. 이 간단한 설정에서 저자는 메사 데이터 세트를 생성한 다음 사전 처리된 GD를 사용하여 메사 대상을 최적화하는 변환기를 시연합니다.
간단한 가중치 설정 하에서 이 레이어가 여기서 연구한 작업을 최적으로 해결할 수 있다는 것을 기본 최적화를 통해 쉽게 찾을 수 있음을 알 수 있습니다. 이 결과는 메사 최적화에 유리한 하드 코딩된 유도 바이어스의 이점을 보여줍니다.
다층 사례에 대한 이론적 통찰을 바탕으로 먼저 Transformer에만 주목하여 심층 선형 및 소프트맥스를 분석합니다. 저자는 W_0 = 0 선택에 해당하는 4채널 구조

RevAlg-d 표현식은 소수의 자유 매개변수를 사용하여 훈련된 다층 변환기를 설명하지만 이를 메사 최적화 알고리즘으로 해석하기는 어렵습니다. 따라서 저자는 가설화된 메사 최적화 알고리즘의 특성을 찾기 위해 선형 회귀 프로빙 분석(Alain & Bengio, 2017; Akyürek et al., 2023)을 사용했습니다.
그림 3에 표시된 Deep Linear Self-Attention Transformer에서 두 프로브 모두 선형적으로 디코딩할 수 있으며 시퀀스 길이와 네트워크 깊이가 증가함에 따라 디코딩 성능이 향상되는 것을 볼 수 있습니다. 따라서 기본 최적화는 메사 최적화 문제의 조건수를 개선하면서 원래의 메사 목적 Lt(W)에서 계층별로 하강하는 하이브리드 알고리즘을 발견합니다. 이로 인해 메사 대물렌즈 Lt(W)가 급격히 감소합니다. 또한 깊이가 증가함에 따라 성능이 크게 향상되는 것을 볼 수 있습니다.
따라서 자동 회귀 메사 목표 Lt(W)의 급격한 감소는 더 나은 전처리된 데이터에 대한 단계적(교차 계층) 메사 최적화에 의해 달성된다고 간주할 수 있습니다. 그림 3: 리버스 엔지니어링 내장 입력을 위한 다층 변환기 교육.
위 내용은 이론적 기반을 바탕으로 심층적인 최적화를 수행할 수 있습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

격변 게임 : AI 에이전트와의 게임 개발 혁명 Blizzard 및 Obsidian과 같은 업계 대기업의 재향 군인으로 구성된 게임 개발 스튜디오 인 Upheaval은 혁신적인 AI 구동 Platfor로 게임 제작에 혁명을 일으킬 준비가되어 있습니다.

Uber의 Robotaxi 전략 : 자율 주행 차량을위한 승차원 생태계 최근 Curbivore 컨퍼런스에서 Uber의 Richard Willder는 Robotaxi 제공 업체를위한 승마 플랫폼이되기위한 전략을 공개했습니다. 그들의 지배적 인 위치를 활용합니다

비디오 게임은 특히 자율적 인 에이전트 및 실제 로봇의 개발에서 최첨단 AI 연구를위한 귀중한 테스트 근거로 입증되며, 인공 일반 정보 (AGI)에 대한 탐구에 잠재적으로 기여할 수 있습니다. 에이

진화하는 벤처 캐피탈 환경의 영향은 미디어, 재무 보고서 및 일상적인 대화에서 분명합니다. 그러나 투자자, 신생 기업 및 자금에 대한 구체적인 결과는 종종 간과됩니다. 벤처 캐피탈 3.0 : 패러다임

Adobe Max London 2025는 Creative Cloud and Firefly에 상당한 업데이트를 제공하여 접근성 및 생성 AI로의 전략적 전환을 반영했습니다. 이 분석에는 Adobe Leadership과의 사전 이벤트 브리핑의 통찰력이 포함되어 있습니다. (참고 : Adob

Meta의 Llamacon 발표는 OpenAi와 같은 폐쇄 된 AI 시스템과 직접 경쟁하도록 설계된 포괄적 인 AI 전략을 보여 주며 동시에 오픈 소스 모델을위한 새로운 수익원을 만듭니다. 이 다각적 인 접근법은 Bo를 대상으로합니다

이 결론에 대한 인공 지능 분야에는 심각한 차이가 있습니다. 어떤 사람들은 "황제의 새로운 옷"을 폭로 할 때라고 주장하는 반면, 인공 지능은 단지 일반적인 기술이라는 생각에 강력하게 반대합니다. 논의합시다. 이 혁신적인 AI 혁신에 대한 분석은 다양한 영향력있는 AI 복잡성을 식별하고 설명하는 것을 포함하여 AI 분야의 최신 발전을 다루는 진행중인 Forbes 열의 일부입니다 (링크를 보려면 여기를 클릭하십시오). 공통 기술로서의 인공 지능 첫째,이 중요한 토론을위한 토대를 마련하기 위해서는 몇 가지 기본 지식이 필요합니다. 현재 인공 지능을 발전시키는 데 전념하는 많은 연구가 있습니다. 전반적인 목표는 인공 일반 지능 (AGI) 및 가능한 인공 슈퍼 인텔리전스 (AS)를 달성하는 것입니다.

회사의 AI 모델의 효과는 이제 핵심 성과 지표입니다. AI 붐 이후 생일 초대장 작성부터 소프트웨어 코드 작성에 이르기까지 생성 AI는 모든 데 사용되었습니다. 이로 인해 언어 모드가 확산되었습니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
