어떤 친구들은 Python 시각화에 내장된 색상이 보기 흉하다고 말합니다. 그러면 palettable을 본 적이 없을 것입니다. paletable은 순수 Python으로 작성된 컬러 바(Colormap) 라이브러리로, 다수의 잘 알려진 시각화 소프트웨어의 색상 막대(예: Tableau 색상 시스템, matplotlib 부분 색상 시스템 등)에는 총 1587가지 유형의 색상 막대(Colormap)가 있으며 수만 가지 단일 색상을 사용할 수 있습니다. 이 글에서는 팔레트 사용 방법을 자세히 소개합니다.
pip install palettable -i https://pypi.tuna.tsinghua.edu.cn/simple
import palettable from palettable.cartocolors.qualitative import Bold_9 #为了描述方便,此处直接倒入palettable.cartocolors.qualitative大类下的Bold_9小类, #实际使用时可直接用palettable.cartocolors.qualitative.Bold_9
Bold_9.show_discrete_image()#Bold_9各种颜色条图片
print(Bold_9.number)#Bold_9这种colormap中单颜色的数目
9 그렇죠 , 위 그림에는 9개의 그리드가 있습니다
print(Bold_9.colors)#Bold_9 colormap中每种颜色的RGB格式色号 print(Bold_9.hex_colors)#Bold_9 colormap中每种颜色的hex格式色号 print(Bold_9.mpl_colors)#RGB tuples in the range 0-1 as used by matplotlib
[[127, 60, 141], [17, 165, 121], [57, 105, 172], [242, 183, 1], [231, 63, 116], [128, 186, 90], [230, 131, 16], [0, 134, 149], [207 , 28, 144]]
[' #7F3C8D', '#11A579', '#3969AC', '#F2B701', '#E73F74', '#80BA5A', '#E68310', '#008695', ' #CF1C90']
[(0.4980392156862745, 0.23529411764705882, 0.5529411764705883), (0.0666666666666667, 0.6470588235294118, 0.4 745098039215686), (0.2235294117647059, 0.4117647058823529, 0.6745098039215687), (0.9490196078431372, 0.7176470588235294, 392156862745098), (0.9058823529411765, 0.24705882352941178, 0.4549019607843137), (0.5019607843137255, 0.7294117647058823, 0.35294117647058826), (0.9019607843137255, 0.5137254901960784, 0.06274509803921569), (0.0, 0.52549019607 84314, 0.5843137254901961), (0.8117647058823529, 0.10980392156862745, 0.56470588235 29412)]
import matplotlib.pyplot as plt import matplotlib as mpl import palettable mpl.rc_file_defaults() my_dpi = 96 plt.figure(figsize=(580 / my_dpi, 580 / my_dpi), dpi=my_dpi) plt.subplot(221) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.tableau.BlueRed_6 colors=palettable.tableau.BlueRed_6.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('tableau.BlueRed_6', size=12) mpl.rc_file_defaults() plt.subplot(222) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.cartocolors.qualitative.Bold_9 colors=palettable.cartocolors.qualitative.Bold_9.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('cartocolors.qualitative.Bold_9', size=12) mpl.rc_file_defaults() plt.subplot(223) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.cartocolors.qualitative.Bold_9 colors=palettable.cartocolors.qualitative.Bold_9.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('cartocolors.qualitative.Bold_9', size=12) plt.subplot(223) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.lightbartlein.sequential.Blues10_5 colors=palettable.lightbartlein.sequential.Blues10_5.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) #matplotlib.patches.Wedge patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('lightbartlein.sequential.Blues10_5', size=12) plt.subplot(224) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], colors=palettable.wesanderson.Moonrise5_6.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('wesanderson.Moonrise5_6', size=12) plt.show()
例子来自几行代码绘制靓丽矩阵图
使用palettable.tableau.TrafficLight_9
import seaborn as sns iris_sns = sns.load_dataset("iris") import palettable g = sns.pairplot( iris_sns, hue='species', palette=palettable.tableau.TrafficLight_9.mpl_colors, #Matplotlib颜色 ) sns.set(style='whitegrid') g.fig.set_size_inches(10, 8) sns.set(style='whitegrid', font_scale=1.5)
使用palettable.tableau.BlueRed_6
使用palettable.cartocolors.qualitative.Bold_9使用palettable.wesanderson.Moonrise5_6使用palettable.cartocolors.diverging.ArmyRose_7_r
palettable下面有16大类Colormap,共计1587小类Colormap,合计上万种单颜色可供使用,已经整理为pdf格式,感兴趣的可以
包含以下16大类
palettable.cartocolors.diverging palettable.cartocolors.qualitative palettable.cartocolors.sequential palettable.cmocean.diverging palettable.cmocean.sequential palettable.colorbrewer.diverging palettable.colorbrewer.qualitative palettable.colorbrewer.sequential palettable.lightbartlein.diverging palettable.lightbartlein.sequential palettable.scientific.diverging palettable.scientific.sequential palettable.matplotlib palettable.mycarta palettable.tableau palettable.wesanderson
共计1587小类【每个小类还有逆类,名称后面加“_r”即可】上面16大类下面有数个小类,例如,著名BI软件Tableau的配色条palettable.tableau这一大类,下面有palettable.tableau.BlueRed_12,palettable.tableau.GreenOrange_12等等数个小类:
palettable.tableau.BlueRed_12 palettable.tableau.BlueRed_6 palettable.tableau.ColorBlind_10 palettable.tableau.Gray_5 palettable.tableau.GreenOrange_12 palettable.tableau.GreenOrange_6 palettable.tableau.PurpleGray_12 palettable.tableau.PurpleGray_6 palettable.tableau.TableauLight_10 palettable.tableau.TableauMedium_10 palettable.tableau.Tableau_10 palettable.tableau.Tableau_20 palettable.tableau.TrafficLight_9
也就是类似上面的这种有1587行。
위 내용은 세계적으로 팔레트에 담긴 '실습'의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!