집 >데이터 베이스 >MySQL 튜토리얼 >예측 및 예측 분석을 위해 MySQL 데이터베이스를 사용하는 방법은 무엇입니까?
예측 및 예측 분석을 위해 MySQL 데이터베이스를 어떻게 사용합니까?
개요:
예측 및 예측 분석은 데이터 분석에서 중요한 역할을 합니다. 널리 사용되는 관계형 데이터베이스 관리 시스템인 MySQL은 예측 및 예측 분석 작업에도 사용할 수 있습니다. 이 기사에서는 예측 및 예측 분석에 MySQL을 사용하는 방법을 소개하고 관련 코드 예제를 제공합니다.
CREATE TABLE sales ( id INT AUTO_INCREMENT PRIMARY KEY, date DATE, product_name VARCHAR(255), quantity INT, price DECIMAL(10,2) );
다음으로 테이블에 몇 가지 샘플 데이터를 삽입할 수 있습니다.
INSERT INTO sales (date, product_name, quantity, price) VALUES ('2020-01-01', 'product1', 100, 10.99), ('2020-01-02', 'product2', 200, 20.99), ('2020-01-03', 'product3', 300, 30.99), ('2020-01-04', 'product4', 400, 40.99), ('2020-01-05', 'product5', 500, 50.99);
먼저 회귀 모델의 계수와 절편을 저장하기 위한 테이블을 만들어야 합니다.
CREATE TABLE sales_regression ( id INT AUTO_INCREMENT PRIMARY KEY, coefficient DECIMAL(10,2), intercept DECIMAL(10,2) );
그런 다음 다음 SQL 문을 사용하여 선형 회귀 계산을 수행하고 결과를 테이블에 저장할 수 있습니다.
INSERT INTO sales_regression (coefficient, intercept) SELECT (n * SUM(x * y) - SUM(x) * SUM(y)) / (n * SUM(x * x) - SUM(x) * SUM(x)), (SUM(y) - (n * SUM(x * y) - SUM(x) * SUM(y)) / (n * SUM(x * x) - SUM(x) * SUM(x)) * SUM(x)) / n FROM ( SELECT @row_number := @row_number + 1 AS n, quantity AS x, price AS y FROM sales, (SELECT @row_number := 0) AS t ORDER BY date ) AS t;
이제 선형 회귀 모델의 계수와 절편을 얻었습니다. 이 값을 사용하여 판매 예측을 할 수 있습니다. 예를 들어, 다음 SQL 문을 사용하여 특정 날짜의 매출을 예측할 수 있습니다.
SELECT '2020-01-06' AS date, coefficient * 600 + intercept AS predicted_sales FROM sales_regression;
판매 예측에 이동 평균 방법을 사용한다고 가정해 보겠습니다. 다음 SQL 문을 사용하여 이동 평균 매출을 계산할 수 있습니다.
SELECT date, AVG(price) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_average FROM sales;
참조:
위 내용은 예측 및 예측 분석을 위해 MySQL 데이터베이스를 사용하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!