누락된 값 처리
데이터 전처리에서 중요한 단계는 기계 학습 모델이 NaN 값을 입력으로 받아들이지 않기 때문에 누락된 데이터를 처리하는 것입니다. 이러한 NaN 값을 채우는 방법은 여러 가지가 있지만 먼저 결측값의 중요성을 이해해야 합니다.
아주 간단한 방법은 머신러닝 데이터세트에서 누락된 값을 모두 제거하는 것이지만, 그 전에 머신러닝 데이터세트에 존재하는 NaN 값의 전체 비율을 확인하세요. 1% 미만인 경우 결측값을 모두 제거할 수 있습니다. 그렇지 않으면 중심 경향 측정, KNN Imputer 등과 같은 다른 방법을 선택하여 데이터를 대치해야 합니다.
특성에 숫자를 사용할 때는 평균 또는 중앙값을 사용합니다. 평균은 행의 모든 값을 합한 다음 그 양으로 나누어 계산할 수 있는 평균값입니다. 중앙값은 평균을 나타내기도 합니다. 중앙값은 데이터를 크기 순서대로 배열하여 시퀀스를 형성하는데, 이는 시퀀스의 중간에 있는 데이터입니다. 데이터 세트의 개별 데이터가 크게 다를 때 중앙값은 데이터 세트의 중심 경향을 설명하는 데 종종 사용됩니다.
머신러닝 데이터 세트에 편향된 분포가 있는 경우 평균보다 중앙값을 사용하는 것이 더 나은 경우가 많습니다.
Outliers/Outliers
이상치는 다른 관측치와 크게 다른 데이터 포인트입니다. 때로는 이러한 이상치가 민감할 수도 있습니다. 이상값을 처리하기 전에 기계 학습 데이터세트를 검토하는 것이 좋습니다.
예:
- 관측된 강수량을 기반으로 한 깊이 값 예측에서 이상값이 중요합니다.
- 집값 예측의 이상치는 의미가 없습니다.
데이터 유출
머신러닝 모델의 데이터 유출 문제란 무엇인가요?
데이터 유출은 기계 학습 모델을 훈련하는 데 사용하는 데이터에 기계 학습 모델이 예측하려는 정보가 포함되어 있을 때 발생합니다. 이로 인해 모델 배포 후 신뢰할 수 없는 예측 결과가 발생합니다.
이 문제는 데이터 표준화 또는 정규화 방법으로 인해 발생할 수 있습니다. 우리 대부분은 데이터를 훈련 세트와 테스트 세트로 분할하기 전에 이러한 방법을 계속 사용하기 때문입니다.
올바른 기계 학습 모델 선택
실시간으로 일부 복잡한 모델을 불필요하게 사용하면 비즈니스 중심의 사람들에게 해석 가능성 문제가 발생할 수 있다고 생각합니다. 예를 들어 선형 회귀는 신경망 알고리즘보다 해석하기가 더 쉽습니다.
데이터 세트의 크기와 복잡성을 기반으로 해당 기계 학습 모델을 선택하세요. 복잡한 문제를 다루는 경우 SVN, KNN, Random Forest 등과 같은 효율적인 기계 학습 모델을 사용할 수 있습니다.
대부분의 경우 데이터 탐색 단계는 해당 기계 학습 모델을 선택하는 데 도움이 됩니다. 시각화에서 데이터가 선형으로 분리 가능한 경우 선형 회귀를 사용할 수 있습니다. 데이터에 대해 아무것도 모르는 경우 서포트 벡터 머신과 KNN이 유용할 것입니다.
모델 해석성 문제도 있습니다. 예를 들어 선형 회귀는 신경망 알고리즘보다 설명하기 쉽습니다.
검증 지표
지표는 모델 예측 변수와 실제 데이터의 정량적 측정값입니다. 질문이 회귀 분석인 경우 주요 지표는 정확도(R2 점수), MAE(평균 절대 오차) 및 RMSE(제곱 평균 오차)입니다. 분류 문제인 경우 핵심 지표는 정밀도, 재현율, F1score 및 혼동 행렬입니다.
위 내용은 머신러닝 초보자를 위한 5가지 일반적인 질문의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

격변 게임 : AI 에이전트와의 게임 개발 혁명 Blizzard 및 Obsidian과 같은 업계 대기업의 재향 군인으로 구성된 게임 개발 스튜디오 인 Upheaval은 혁신적인 AI 구동 Platfor로 게임 제작에 혁명을 일으킬 준비가되어 있습니다.

Uber의 Robotaxi 전략 : 자율 주행 차량을위한 승차원 생태계 최근 Curbivore 컨퍼런스에서 Uber의 Richard Willder는 Robotaxi 제공 업체를위한 승마 플랫폼이되기위한 전략을 공개했습니다. 그들의 지배적 인 위치를 활용합니다

비디오 게임은 특히 자율적 인 에이전트 및 실제 로봇의 개발에서 최첨단 AI 연구를위한 귀중한 테스트 근거로 입증되며, 인공 일반 정보 (AGI)에 대한 탐구에 잠재적으로 기여할 수 있습니다. 에이

진화하는 벤처 캐피탈 환경의 영향은 미디어, 재무 보고서 및 일상적인 대화에서 분명합니다. 그러나 투자자, 신생 기업 및 자금에 대한 구체적인 결과는 종종 간과됩니다. 벤처 캐피탈 3.0 : 패러다임

Adobe Max London 2025는 Creative Cloud and Firefly에 상당한 업데이트를 제공하여 접근성 및 생성 AI로의 전략적 전환을 반영했습니다. 이 분석에는 Adobe Leadership과의 사전 이벤트 브리핑의 통찰력이 포함되어 있습니다. (참고 : Adob

Meta의 Llamacon 발표는 OpenAi와 같은 폐쇄 된 AI 시스템과 직접 경쟁하도록 설계된 포괄적 인 AI 전략을 보여 주며 동시에 오픈 소스 모델을위한 새로운 수익원을 만듭니다. 이 다각적 인 접근법은 Bo를 대상으로합니다

이 결론에 대한 인공 지능 분야에는 심각한 차이가 있습니다. 어떤 사람들은 "황제의 새로운 옷"을 폭로 할 때라고 주장하는 반면, 인공 지능은 단지 일반적인 기술이라는 생각에 강력하게 반대합니다. 논의합시다. 이 혁신적인 AI 혁신에 대한 분석은 다양한 영향력있는 AI 복잡성을 식별하고 설명하는 것을 포함하여 AI 분야의 최신 발전을 다루는 진행중인 Forbes 열의 일부입니다 (링크를 보려면 여기를 클릭하십시오). 공통 기술로서의 인공 지능 첫째,이 중요한 토론을위한 토대를 마련하기 위해서는 몇 가지 기본 지식이 필요합니다. 현재 인공 지능을 발전시키는 데 전념하는 많은 연구가 있습니다. 전반적인 목표는 인공 일반 지능 (AGI) 및 가능한 인공 슈퍼 인텔리전스 (AS)를 달성하는 것입니다.

회사의 AI 모델의 효과는 이제 핵심 성과 지표입니다. AI 붐 이후 생일 초대장 작성부터 소프트웨어 코드 작성에 이르기까지 생성 AI는 모든 데 사용되었습니다. 이로 인해 언어 모드가 확산되었습니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

드림위버 CS6
시각적 웹 개발 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전
