안녕하세요 여러분.
AI 기술을 사용하여 모자이크를 제거하는 것에 대해 생각해 본 적이 있나요?
이 문제를 신중하게 생각하는 것은 상당히 어렵습니다. 왜냐하면 우리가 이전에 사용했던 AI 기술은 얼굴 인식이든 OCR 인식이든 적어도 수동으로 인식할 수 있기 때문입니다. 그런데 모자이크 사진을 주면 복원할 수 있나요?
물론 어렵습니다. 인간이 회복할 수 없다면 어떻게 컴퓨터에게 회복을 가르칠 수 있을까요?
제가 며칠 전에 쓴 "AI를 활용한 아바타 생성"이라는 글을 아직도 기억하시나요? 해당 기사에서 우리는 임의의 난수로부터 이미지를 생성할 수 있는 DCGAN 모델을 훈련했습니다.
픽셀별로 생성된 노이즈 맵으로 난수를 사용합니다.
모델은 난수로부터 일반 아바타를 생성합니다.
DCGAN생성기 모델과 판별기 모델의 두 가지 모델이 포함되어 있습니다. 판별기 모델을 속이기 위해서는 그림이 훈련 샘플에 가까울수록 생성기 모델에서 생성된 그림을 방지하기 위해 식별 능력을 지속적으로 향상시켜야 합니다. 혼란스러워서.
위 생성기 모델의 입력을 난수에서 모자이크가 있는 그림으로 변경하면 출력은 모자이크가 없는 그림이 됩니다. 모자이크를 제거하는 모델을 훈련할 수 있나요?
다음으로 모자이크 제거 모델을 훈련시키는 방법을 공유하고, 다운로드하여 직접 효과를 시험해 볼 수 있는 기성 도구를 공유하겠습니다.
1. Pix2pix + CycleGAN
여기에서는 위에서 소개한 DCGAN을 사용하지 않고 Pix2pix와 CycleGAN이라는 두 가지 더 강력한 모델을 사용하여 별도로 훈련합니다.
Pix2pix는 GAN 기반의 이미지 번역 알고리즘으로, 모자이크 사진부터 일반 사진까지 기본적으로 한 언어에서 다른 언어로 변환하는 과정과 유사합니다.
Pix2pix 모델 번역
CycleGAN으로 얻은 효과는 모양 자체는 변경되지 않은 채 단순히 서로 다른 도메인 간에 이미지를 변환하는 것입니다.
CycleGAN 모델
이 기사에서는 더 저렴한 비용으로 모델을 훈련하는 데 도움이 될 수 있는 데이터 세트와 완전한 훈련 프로세스를 제공합니다.
먼저 데이터 세트
데이터 세트
를 다운로드합니다. 총 654M입니다.
그런 다음 Paddle 사전 학습된 모델을 다운로드합니다
사전 학습된 모델
마지막으로 Pix2pix 및 CycleGAN 모델을 각각 학습합니다.
Pix2pix 모델
python gan<span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">/</span>infer<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">.py</span> <br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--init_model output/pix2pix/checkpoints/110/ </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--dataset_dir /home/aistudio/ </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--image_size 256 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--n_samples 1 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--crop_size 256 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--model_net Pix2pix </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--net_G unet_256 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--test_list /home/aistudio/test_list.txt </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--output ./infer_result/pix2pix/</span>
CycleGAN 모델
python gan<span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">/</span>infer<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">.py</span> <br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--init_model output/cyclegan/checkpoints/48/ </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--dataset_dir /home/aistudio/ </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--image_size 256 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--n_samples 1 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--crop_size 256 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--input_style A </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--test_list /home/aistudio/test_list.txt </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--model_net CycleGAN </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--net_G resnet_9block </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--g_base_dims 32 </span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">--output ./infer_result/cyclegan/</span>
훈련 후 gan/infer.py 파일을 실행하여 이 두 모델의 모자이크 제거 효과를 비교할 수 있습니다.
2. 기성 도구
모델을 직접 학습하고 싶지 않다면 다음을 참조하여 의미론적 분할 및 이미지 번역을 기반으로 하는 기성 프로젝트를 참조하세요. Pix2pix 및 CycleGAN.
프로젝트 주소: https://github.com/HypoX64/DeepMosaics/blob/master/README_CN.md
Windows 사용자를 위해 저자는 GUI 인터페이스가 포함된 설치가 필요 없는 소프트웨어 패키지를 제공합니다.
UI 인터페이스
앞서 말했듯이 이 기술은 아직 상대적으로 어렵기 때문에 너무 큰 기대는 하지 마세요. 실제 제거 효과는 다음과 같습니다.
Encoding
Decoding
효과는 아직 괜찮지만, 상상만큼 완벽하지는 않습니다. 다운로드해서 실행해 보세요.
위 내용은 AI가 모자이크를 제거할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Meta는 NVIDIA, IBM 및 DELL과 같은 파트너와 함께 LLAMA 스택의 엔터프라이즈 수준 배포 통합을 확장했습니다. 보안 측면에서 Meta는 Llama Guard 4, Llamafirewall 및 Cyberseceval 4와 같은 새로운 도구를 출시했으며 AI 보안을 향상시키기 위해 LLAMA Defenders 프로그램을 시작했습니다. 또한 Meta는 공공 서비스, 건강 관리 및 교육을 개선하기 위해 노력하는 신생 기업을 포함하여 10 개의 글로벌 기관에 LLAMA Impact Grants의 150 만 달러를 배포했습니다. Llama 4에 의해 구동되는 새로운 Meta AI 응용 프로그램, Meta AI로 생각됩니다.

인간 -AI 상호 작용을 개척하는 회사 인 Joi AI는 이러한 진화하는 관계를 설명하기 위해 "AI-Lationships"라는 용어를 도입했습니다. Joi AI의 관계 치료사 인 Jaime Bronstein은 이것이 인간 C를 대체하는 것이 아니라는 것을 분명히합니다.

온라인 사기와 봇 공격은 비즈니스에 큰 도전을 제기합니다. 소매 업체는 봇과 싸우고, 은행은 전투 계정 인수 및 소셜 미디어 플랫폼이 사천자와 어려움을 겪고 있습니다. AI의 부상은이 문제를 악화시킨다

AI 에이전트는 마케팅에 혁명을 일으킬 준비가되어 있으며 이전 기술 변화의 영향을 능가 할 수 있습니다. 생성 AI의 상당한 발전을 나타내는이 에이전트는 Chatgpt와 같은 정보뿐만 아니라 Actio도 취합니다.

중요한 NBA 게임 4 결정에 대한 AI의 영향 두 가지 중추적 인 게임 4 NBA 매치업은 AI의 게임 변화 역할을 선보였습니다. 첫 번째로 덴버의 Nikola Jokic의 놓친 3 점은 Aaron Gordon의 마지막으로 골목길을 이끌었습니다. 소니의 매

전통적으로 전 세계적으로 재생 의학 전문 지식을 확장하여 광범위한 여행, 실습 교육 및 수년간의 멘토링을 요구했습니다. 이제 AI는이 환경을 변화시키고 지리적 한계를 극복하고 EN을 통한 진행 상황을 가속화하고 있습니다.

인텔은 제조 공정을 선도적 인 위치로 반환하기 위해 노력하고 있으며 팹 반도체 고객을 유치하여 팹에서 칩을 만들려고 노력하고 있습니다. 이를 위해 인텔은 프로세스의 경쟁력을 증명할뿐만 아니라 파트너가 친숙하고 성숙한 워크 플로우, 일관되고 신뢰할 수있는 방식으로 칩을 제조 할 수 있음을 보여주기 위해 업계에 대한 신뢰를 더 많이 구축해야합니다. 오늘 내가 듣는 모든 것은 인텔 이이 목표를 향해 나아가고 있다고 믿게 만듭니다. 새로운 CEO 인 탄 리바이 (Tan Libai)의 기조 연설이 그 날을 시작했다. Tan Libai는 간단하고 간결합니다. 그는 Intel의 Foundry Services에서 몇 가지 과제를 간략하게 설명하고 회사가 이러한 과제를 해결하고 향후 인텔의 파운드리 서비스를위한 성공적인 경로를 계획하기 위해 취한 조치를 취했습니다. Tan Libai는 고객을 더 많이 만들기 위해 인텔의 OEM 서비스가 구현되는 과정에 대해 이야기했습니다.

AI 위험과 관련된 점점 더 많은 문제를 해결하기 위해, 글로벌 특수 재보험 회사 인 Chaucer Group 및 Armilla AI는 TPL (Third-Party Liability) 보험 상품을 도입하기 위해 힘을 합쳤습니다. 이 정책은 비즈니스를 보호합니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

드림위버 CS6
시각적 웹 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.
