고차원 데이터의 저차원 표현을 학습하는 것은 비지도 학습의 기본 작업입니다. 이러한 표현을 통해 데이터의 본질을 간결하게 포착하고 저차원 입력을 기반으로 다운스트림 작업을 수행할 수 있기 때문입니다. VAE(Variational Autoencoder)는 중요한 표현 학습 방법이지만 객관적인 제어로 인해 표현 학습은 여전히 어려운 작업입니다. VAE의 증거 하한(ELBO) 목표는 생성적으로 모델링되지만 학습 표현은 이 목표를 직접적으로 목표로 삼지 않으며, 이는 얽힘 풀기와 같은 표현 학습 작업에 대한 특정 수정이 필요합니다. 이러한 수정은 때때로 모델에 암시적이고 바람직하지 않은 변경을 초래하여 제어된 표현 학습을 어려운 작업으로 만듭니다.
Variational Autoencoder의 표현 학습 문제를 해결하기 위해 본 논문에서는 Gromov-Wasserstein Autoencoders(GWAE)라는 새로운 생성 모델을 제안합니다. GWAE는 VAE(Variational Autoencoder) 모델 아키텍처를 기반으로 표현 학습을 위한 새로운 프레임워크를 제공합니다. 데이터 변수의 생성 모델링을 위한 기존 VAE 기반 표현 학습 방법과 달리 GWAE는 데이터와 잠재 변수 간의 최적 전송을 통해 유익한 표현을 얻습니다. Gromov-Wasserstein(GW) 측정법은 고려 중인 변수의 거리 구조에 초점을 맞춘 비교할 수 없는 변수(예: 서로 다른 차원을 가진 변수) 간의 최적의 전송을 가능하게 합니다. ELBO 목표를 GW 메트릭으로 대체함으로써 GWAE는 변형 자동 인코더의 표현 학습을 직접 목표로 데이터와 잠재 공간 간의 비교를 수행합니다(그림 1). 표현 학습의 이러한 공식화를 통해 학습된 표현은 메타 우선순위라고 불리는 유익한 것으로 간주되는 특정 속성(예: 분해성)을 가질 수 있습니다.
그림 1 VAE와 GWAE의 차이점
이 연구는 ICLR 2023에서 승인되었습니다.
- 논문 링크: https://arxiv.org/abs/2209.07007
- 코드 링크: https://github.com/ganmodokix/gwae
방법 소개
데이터 분포와 잠재적 사전 분포 간의 GW 목표는 다음과 같이 정의됩니다.
이 최적 전송 비용 공식은 비교할 수 없는 공간에서 분포의 불일치를 측정할 수 있지만 연속 분포의 경우 모든 커플링의 하한은 하한이므로 정확한 GW 값을 계산하는 것은 비현실적입니다. 이 문제를 해결하기 위해 GWAE는 자동 미분을 통해 기울기를 계산할 수 있는 GW 추정기를 추정하고 최소화하기 위해 완화된 최적화 문제를 해결합니다. 완화 목표는 추정된 GW 메트릭과 세 가지 정규화 손실의 합이며, 이는 모두 PyTorch와 같은 미분 가능한 프로그래밍 프레임워크에서 구현될 수 있습니다. 이 완화 목표는 주요 손실과 세 가지 정규화 손실, 즉 주요 추정 GW 손실, WAE 기반 재구성 손실, 병합된 충분 조건 손실 및 엔트로피 정규화 손실로 구성됩니다.
이 체계는 사전 분포를 유연하게 맞춤 설정하여 저차원 표현에 유익한 기능을 도입할 수도 있습니다. 구체적으로 이 문서에서는 세 가지 사전 모집단, 즉 다음을 소개합니다.
Neural Prior(NP) NP가 있는 GWAE에서는 완전히 연결된 신경망을 사용하여 사전 샘플링 장치를 구성합니다. 이 사전 분포군은 기본 변수에 대해 더 적은 가정을 하며 일반적인 상황에 적합합니다.
Factorized Neural Prior(FNP) FNP를 사용하는 GWAE에서 샘플러는 로컬로 연결된 신경망을 사용하여 구축되며, 여기서 각 잠재 변수에 대한 항목은 독립적으로 생성됩니다. 이 샘플러는 인수분해된 사전 표현과 용어 독립적 표현을 생성하며, 이는 대표 메타 우선, 분리를 위한 탁월한 방법입니다.
Gaussian Mixture Prior(GMP) GMP에서는 여러 가우시안 분포의 혼합으로 정의되며, Heavy 매개변수화 기술과 Gumbel-Max 기술을 사용하여 해당 샘플러를 구현할 수 있습니다. GMP를 사용하면 사전의 각 가우스 구성 요소가 클러스터를 캡처할 것으로 예상되는 표현에서 클러스터를 가정할 수 있습니다.
실험 및 결과
이 연구는 두 가지 주요 메타 우선순위인 분리 및 클러스터링을 사용하여 GWAE를 경험적으로 평가합니다.
Disentanglement 이 연구에서는 3D Shapes 데이터 세트와 DCI 측정법을 사용하여 GWAE의 분리 기능을 측정했습니다. 결과는 FNP를 사용하는 GWAE가 단일 축에서 물체 색상 요소를 학습할 수 있음을 보여 주며, 이는 GWAE의 분리 기능을 보여줍니다. 정량적 평가는 또한 GWAE의 분리 성능을 보여줍니다.
클러스터링 클러스터링 메타 우선순위를 기반으로 얻은 표현을 평가하기 위해 본 연구에서는 OoD(Out-of-Distribution) 탐지를 수행했습니다. MNIST 데이터세트는 ID(In-Distribution) 데이터로 사용되며 Omniglot 데이터세트는 OoD 데이터로 사용됩니다. MNIST에는 손으로 쓴 숫자가 포함되어 있지만 Omniglot에는 다양한 문자가 포함된 손으로 쓴 문자가 포함되어 있습니다. 본 실험에서 ID와 OoD 데이터 세트는 손으로 쓴 이미지의 도메인을 공유하지만 서로 다른 문자를 포함합니다. 모델은 ID 데이터에 대해 교육을 받은 다음 학습된 표현을 사용하여 ID 또는 OoD 데이터를 감지합니다. VAE 및 DAGMM에서 OoD 감지에 사용되는 변수는 사전 로그 우도이고, GWAE에서는 칸토로비치 전위입니다. GWAE의 이전 버전은 MNIST 클러스터를 캡처하기 위해 GMP를 사용하여 구성되었습니다. ROC 곡선은 모델의 OoD 감지 성능을 보여 주며 세 가지 모델 모두 거의 완벽한 성능을 달성했지만 GMP를 사용하여 구축된 GWAE는 AUC(곡선 아래 면적) 측면에서 가장 좋은 성능을 보였습니다.
또한 본 연구에서는 GWAE의 생성 능력을 평가했습니다.
오토인코더 기반 생성 모델로서의 성능 특정 메타 우선 순위 없이 일반적인 사례를 처리하는 GWAE의 능력을 평가하기 위해 CelebA 데이터 세트를 사용하여 생성 성능을 평가했습니다. 실험에서는 FID를 사용하여 모델의 생성 성능을 평가하고 PSNR을 사용하여 자동 인코딩 성능을 평가합니다. GWAE는 NP를 사용하여 두 번째로 좋은 생성 성능과 최고의 자동 인코딩 성능을 달성하여 모델에서 데이터 분포를 캡처하고 표현에서 데이터 정보를 캡처하는 능력을 입증했습니다.
Summary
- GWAE는 Gromov-Wasserstein 메트릭을 기반으로 구축된 Varial Autoencoder 생성 모델로 표현 학습을 직접 수행하도록 설계되었습니다.
- 사전에는 미분 가능한 샘플만 필요하므로 다양한 사전 분포 설정을 구성하여 메타 우선 순위(표현의 이상적인 속성)를 가정할 수 있습니다.
- 일차 메타 우선순위와 변형 자동 인코더로서의 성능 평가에 대한 실험은 GWAE 공식화의 유연성과 GWAE의 표현 학습 기능을 보여줍니다.
- 제1저자 Nao Nakagawa 개인 홈페이지: https://ganmodokix.com/note/cv
- 홋카이도대학 멀티미디어 연구소 홈페이지: https://www-lmd.ist.hokudai. /
위 내용은 VAE 표현 학습 문제를 해결하기 위해 홋카이도 대학은 새로운 생성 모델 GWAE를 제안했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Hugging Face의 올림픽 코더 -7b : 강력한 오픈 소스 코드 추론 모델 우수한 코드 중심 언어 모델을 개발하기위한 경쟁은 강화되고 있으며, Hugging Face는 엄청난 경쟁자 인 OlympicCoder-7B와 경쟁에 참여했습니다.

AI가 단순한 질문에 대답하는 것 이상을 할 수 있기를 바라는 여러분 중 몇 명이 있습니까? 나는 내가 가지고 있다는 것을 알고 있으며, 늦게 그것이 어떻게 변화하고 있는지에 놀랐습니다. AI 챗봇은 더 이상 채팅에 관한 것이 아니라 창작에 관한 것입니다.

Smart AI가 모든 수준의 엔터프라이즈 소프트웨어 플랫폼 및 애플리케이션에 통합되기 시작함에 따라 (강력한 핵심 도구와 덜 안정적인 시뮬레이션 도구가 있음을 강조해야 함) 이러한 에이전트를 관리하려면 새로운 인프라 기능 세트가 필요합니다. 독일 베를린에 본사를 둔 프로세스 오케스트레이션 회사 인 Camunda는 Smart AI가 적절한 역할을 수행하고 새로운 디지털 작업장에서 정확한 비즈니스 목표 및 규칙에 맞게 조정하는 데 도움이 될 수 있다고 생각합니다. 이 회사는 현재 조직이 AI 에이전트를 모델링, 배포 및 관리하도록 돕기 위해 설계된 지능형 오케스트레이션 기능을 제공합니다. 실용적인 소프트웨어 엔지니어링 관점에서, 이것이 무엇을 의미합니까? 확실성과 비 결정적 프로세스의 통합 이 회사는 핵심은 사용자 (일반적으로 데이터 과학자, 소프트웨어)를 허용하는 것이라고 말했다.

다음 '25 년 Google Cloud에 참석하면서 Google이 AI 제품을 구별하는 방법을보고 싶어했습니다. 에이전트 공간 (여기서 논의 된)과 고객 경험 제품군 (여기서 논의)에 관한 최근의 발표는 유망한 비즈니스 valu를 강조했습니다.

검색 증강 생성 (RAG) 시스템을위한 최적의 다국적 임베딩 모델 선택 오늘날의 상호 연결된 세계에서 효과적인 다국어 AI 시스템을 구축하는 것이 가장 중요합니다. 강력한 다국어 임베딩 모델은 RE에 중요합니다

Tesla의 Austin Robotaxi 런칭 : Musk의 주장에 대한 자세한 내용 Elon Musk는 최근 텍사스 오스틴에서 Tesla의 다가오는 Robotaxi 런칭을 발표하여 안전상의 이유로 소규모 10-20 대의 차량을 배치하여 빠른 확장 계획을 세웠습니다. 시간

인공 지능이 적용되는 방식은 예상치 못한 일 수 있습니다. 처음에 우리 중 많은 사람들이 주로 코드 작성 및 컨텐츠 작성과 같은 창의적이고 기술적 인 작업에 주로 사용되었다고 생각할 수도 있습니다. 그러나 하버드 비즈니스 리뷰 (Harvard Business Review)가 최근 조사한 결과는 그렇지 않습니다. 대부분의 사용자는 일뿐만 아니라 지원, 조직, 심지어 우정을 위해 인공 지능을 추구합니다! 이 보고서는 AI 신청 사례의 첫 번째는 치료 및 동반자라고 밝혔다. 이것은 24/7 가용성과 익명의 정직한 조언과 피드백을 제공하는 능력이 큰 가치가 있음을 보여줍니다. 반면에, 마케팅 작업 (예 : 블로그 작성, 소셜 미디어 게시물 만들기 또는 광고 사본)은 인기있는 사용 목록에서 훨씬 낮습니다. 이게 왜? 연구 결과와 그것이 어떻게 계속되는지 보자.

AI 요원의 부상은 비즈니스 환경을 변화시키고 있습니다. 클라우드 혁명과 비교하여, AI 에이전트의 영향은 지식 작업에 혁명을 일으킬 것으로 예상되며, 기하 급수적으로 더 크다. 인간의 의사 결정 마키를 시뮬레이션하는 능력


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Dreamweaver Mac版
시각적 웹 개발 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는
