>백엔드 개발 >Golang >Golang의 sync.Cond에 대해 자세히 이야기해 보겠습니다.

Golang의 sync.Cond에 대해 자세히 이야기해 보겠습니다.

青灯夜游
青灯夜游앞으로
2023-03-20 18:03:221850검색

Golang의 sync.Cond에 대해 자세히 이야기해 보겠습니다.

이 글에서는 sync.Cond의 기본 사용법, 구현 원칙, 사용 주의 사항 및 일반적인 사용을 포함하여 Go 언어의 sync.Cond 동시성 기본 요소를 소개합니다. 사용 시나리오. 고루틴 간의 동기화를 달성하기 위해 Cond를 더 잘 이해하고 적용할 수 있습니다. sync.Cond 并发原语,包括 sync.Cond的基本使用方法、实现原理、使用注意事项以及常见的使用使用场景。能够更好地理解和应用 Cond 来实现 goroutine 之间的同步。

1. 基本使用

1.1 定义

sync.Cond是Go语言标准库中的一个类型,代表条件变量。条件变量是用于多个goroutine之间进行同步和互斥的一种机制。sync.Cond可以用于等待和通知goroutine,以便它们可以在特定条件下等待或继续执行。

1.2 方法说明

sync.Cond的定义如下,提供了Wait ,Singal,Broadcast以及NewCond方法

type Cond struct {
   noCopy noCopy
   // L is held while observing or changing the condition
   L Locker

   notify  notifyList
   checker copyChecker
}

func NewCond(l Locker) *Cond {}
func (c *Cond) Wait() {}
func (c *Cond) Signal() {}
func (c *Cond) Broadcast() {}
  • NewCond方法: 提供创建Cond实例的方法
  • Wait方法: 使当前线程进入阻塞状态,等待其他协程唤醒
  • Singal方法: 唤醒一个等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。
  • Broadcast方法: 唤醒所有等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。

1.3 使用方式

当使用sync.Cond时,通常需要以下几个步骤:

  • 定义一个互斥锁,用于保护共享数据;
  • 创建一个sync.Cond对象,关联这个互斥锁;
  • 在需要等待条件变量的地方,获取这个互斥锁,并使用Wait方法等待条件变量被通知;
  • 在需要通知等待的协程时,使用SignalBroadcast方法通知等待的协程。
  • 最后,释放这个互斥锁。

1.4 使用例子    

下面是一个使用sync.Cond的简单示例,实现了一个生产者-消费者模型:

var (
    // 1. 定义一个互斥锁
    mu    sync.Mutex
    cond  *sync.Cond
    count int
)

func init() {
    // 2.将互斥锁和sync.Cond进行关联
    cond = sync.NewCond(&mu)
}

func worker(id int) {
    // 消费者
    for {
        // 3. 在需要等待的地方,获取互斥锁,调用Wait方法等待被通知
        mu.Lock()
        // 这里会不断循环判断 是否有待消费的任务
        for count == 0 {
            cond.Wait() // 等待任务
        }
        count--
        fmt.Printf("worker %d: 处理了一个任务\n", id)
        // 5. 最后释放锁
        mu.Unlock()
    }
}

func main() {
    // 启动5个消费者
    for i := 1; i <= 5; i++ {
        go worker(i)
    }

    for {
        // 生产者
        time.Sleep(1 * time.Second)
        mu.Lock()
        count++
        // 4. 在需要等待的地方,获取互斥锁,调用BroadCast/Singal方法进行通知
        cond.Broadcast() 
        mu.Unlock()
    }
}

在这个示例中,创建一个生产者在生产任务,同时创建五个消费者来消费任务。当任务数为0时,此时消费者会调用Wait方法进入阻塞状态,等待生产者的通知。

当生产者产生任务后,使用Broadcast方法通知所有的消费者,唤醒处于阻塞状态的消费者,开始消费任务。这里使用sync.Cond实现多个协程之间的通信和同步。

1.5 为什么Sync.Cond 需要关联一个锁,然后调用Wait方法前需要先获取该锁

这里的原因在于调用Wait方法前如果不加锁,有可能会出现竞态条件。

这里假设多个协程都处于等待状态,然后一个协程调用了Broadcast唤醒了其中一个或多个协程,此时这些协程都会被唤醒。

如下,假设调用Wait方法前没有加锁的话,那么所有协程都会去调用condition方法去判断是否满足条件,然后都通过验证,执行后续操作。

for !condition() {
    c.Wait()
}
c.L.Lock()
// 满足条件情况下,执行的逻辑
c.L.Unlock()

此时会出现的情况为,本来是需要在满足condition方法的前提下,才能执行的操作。现在有可能的效果,为前面一部分协程执行时,还是满足condition条件的;但是后面的协程,尽管不满足condition条件,还是执行了后续操作,可能导致程序出错。

正确的用法应该是,在调用Wait方法前便加锁,那么即使多个协程被唤醒,一次也只会有一个协程判断是否满足condition条件,然后执行后续操作。这样子就不会出现多个协程同时判断,导致不满足条件,也执行后续操作的情况出现。

c.L.Lock()
for !condition() {
    c.Wait()
}
// 满足条件情况下,执行的逻辑
c.L.Unlock()

2.使用场景

2.1 基本说明

sync.Cond是为了协调多个协程之间对共享数据的访问而设计的。使用sync.Cond的场景通常都涉及到对共享数据的操作,如果没有共享数据的操作,那么没有太大必要使用sync.Cond来进行协调。当然,如果存在重复唤醒的场景,即使没有对共享数据的操作,也是可以使用sync.Cond来进行协调的。

通常情况下,使用sync.Cond

1. 기본 사용법

1.1 정의

동기화. Cond는 조건 변수를 나타내는 Go 언어 표준 라이브러리의 유형입니다. 조건 변수는 여러 고루틴 간의 동기화 및 상호 배제를 위한 메커니즘입니다. sync.Cond는 특정 조건에서 실행을 기다리거나 계속할 수 있도록 고루틴을 기다리고 알리는 데 사용할 수 있습니다. 🎜

1.2 메소드 설명

🎜sync.Cond는 다음과 같이 정의하고 Wait code>는 code>, Singal, BroadcastNewCond 메소드🎜
package main

import (
        "fmt"
        "sync"
        "time"
)

type Queue struct {
        items []int
        cap   int
        lock  sync.Mutex
        cond  *sync.Cond
}

func NewQueue(cap int) *Queue {
        q := &Queue{
            items: make([]int, 0),
            cap:   cap,
        }
        q.cond = sync.NewCond(&q.lock)
        return q
}

func (q *Queue) Put(item int) {
        q.lock.Lock()
        defer q.lock.Unlock()

        for len(q.items) == q.cap {
                q.cond.Wait()
        }

        q.items = append(q.items, item)
        q.cond.Broadcast()
}

func (q *Queue) Get() int {
        q.lock.Lock()
        defer q.lock.Unlock()

        for len(q.items) == 0 {
            q.cond.Wait()
        }

        item := q.items[0]
        q.items = q.items[1:]
        q.cond.Broadcast()

        return item
}

func main() {
        q := NewQueue(10)

        // Producer
        go func() {
            for {
                q.Put(i)
                fmt.Printf("Producer: Put %d\n", i)
                time.Sleep(100 * time.Millisecond)
            }
        }()

        // Consumer
        go func() {
            for {
                    item := q.Get()
                    fmt.Printf("Consumer: Get %d\n", item)
                    time.Sleep(200 * time.Millisecond)
            }
        }()

        wg.Wait()
}
  • NewCond를 제공합니다. 메서드: 생성 Cond 인스턴스 메서드 제공
  • Wait 메서드: 현재 스레드를 차단 상태로 두고 다른 코루틴이 깨어날 때까지 기다립니다.
  • Singal 메서드: 조건 변수를 기다리는 스레드를 깨웁니다. 대기 중인 스레드가 없으면 메서드가 즉시 반환됩니다.
  • Broadcast 메서드: 조건 변수를 기다리고 있는 모든 스레드를 깨웁니다. 대기 중인 스레드가 없으면 메서드가 즉시 반환됩니다.

1.3 사용법

🎜sync.Cond를 사용할 때 일반적으로 다음과 같습니다. 다음 단계가 필요합니다. 🎜
  • 공유 데이터를 보호하기 위해 뮤텍스를 정의합니다.
  • sync.Cond 개체를 만들고 이 뮤텍스 잠금을 연결합니다. li>조건 변수를 기다려야 하는 경우 이 뮤텍스 잠금을 획득하고 Wait 메서드를 사용하여 조건 변수가 알림을 받을 때까지 기다립니다.
  • 알림 코루틴을 기다릴 때 Signal 또는 Broadcast 메서드를 사용하여 대기 중인 코루틴에 알립니다.
  • 마지막으로 뮤텍스 잠금을 해제합니다.

1.4 사용 예

🎜다음은 sync.Cond를 사용하여 프로덕션 생산자를 구현하는 간단한 예입니다. -소비자 모델: 🎜
type notifyList struct {
   wait   uint32
   notify uint32
   lock   uintptr // key field of the mutex
   head   unsafe.Pointer
   tail   unsafe.Pointer
}
🎜이 예에서는 작업을 생산하기 위해 생산자를 만들고, 작업을 소비하기 위해 5명의 소비자를 만듭니다. 작업 수가 0이면 소비자는 Wait 메서드를 호출하여 차단 상태로 들어가고 생산자의 알림을 기다립니다. 🎜🎜Producer가 태스크를 생성하면 Broadcast 메서드를 사용하여 모든 Consumer에게 알리고, 차단된 Consumer를 깨우고 Task 소비를 시작합니다. sync.Cond는 여기에서 여러 코루틴 간의 통신 및 동기화를 달성하는 데 사용됩니다. 🎜

1.5 Sync.Cond가 잠금을 연결한 다음 Wait 메서드를 호출하기 전에 잠금을 획득해야 하는 이유

🎜이유는 여기에 있습니다. 호출하는 것입니다. Wait 메서드 전에 잠그지 않으면 경쟁 조건이 발생할 수 있습니다. 🎜🎜여기에서는 여러 코루틴이 대기 상태에 있고 코루틴이 Broadcast를 호출하여 하나 이상의 코루틴을 깨운다고 가정합니다. 🎜🎜다음과 같이 Wait 메서드를 호출하기 전에 잠금이 없다고 가정하면 모든 코루틴은 condition 메서드를 호출하여 조건이 충족되는지 확인한 다음 확인하고 후속 작업을 실행합니다. 🎜
func (c *Cond) Wait() {
   // 将自己放到等待队列中
   t := runtime_notifyListAdd(&c.notify)
   // 释放锁
   c.L.Unlock()
   // 等待唤醒
   runtime_notifyListWait(&c.notify, t)
   // 重新获取锁
   c.L.Lock()
}
🎜 이때 일어나는 일은 조건 메서드가 만족되어야만 작업을 수행할 수 있다는 것입니다. 이제 코루틴의 이전 부분이 실행될 때 조건을 충족하지만 후속 코루틴은 조건을 충족하지 않습니다. 조건이 계속 실행되면 프로그램 오류가 발생할 수 있습니다. 🎜🎜올바른 사용법은 Wait 메서드를 호출하기 전에 잠그는 것입니다. 그러면 여러 코루틴이 활성화되더라도 한 번에 하나의 코루틴만 조건이 충족되는지 여부를 판단합니다. > 조건을 지정한 후 후속 작업을 수행합니다. 이렇게 하면 여러 개의 코루틴이 동시에 판단되지 않아 조건이 충족되지 않고 후속 작업이 수행되는 상황이 발생합니다. 🎜<pre class="brush:js;toolbar:false;">func (c *Cond) Signal() { // 唤醒等待队列中的一个协程 runtime_notifyListNotifyOne(&amp;c.notify) }</pre><h2><strong>2. 사용 시나리오</strong></h2> <h3 data-id="heading-8"><strong>2.1 기본 지침</strong></h3>🎜<code> sync.Cond는 여러 코루틴 간의 공유 데이터에 대한 액세스를 조정하도록 설계되었습니다. sync.Cond 사용 시나리오에는 일반적으로 공유 데이터 작업이 포함됩니다. 공유 데이터가 없으면 작업을 사용할 필요가 없습니다. sync.Cond를 사용하여 조정합니다. 물론, wake-up이 반복되는 시나리오가 있다면, 공유 데이터에 대한 연산이 없더라도 sync.Cond를 사용하여 조정을 할 수 있습니다. 🎜🎜일반적으로 sync.Cond를 사용하는 시나리오는 여러 코루틴이 동일한 공유 데이터에 액세스해야 하며 공유 데이터에 액세스하거나 수정하기 전에 특정 조건이 충족될 때까지 기다려야 한다는 것입니다. 데이터. 🎜

在这些场景下,使用sync.Cond可以方便地实现对共享数据的协调,避免了多个协程之间的竞争和冲突,保证了共享数据的正确性和一致性。因此,如果没有涉及到共享数据的操作,就没有必要使用sync.Cond来进行协调。

2.2 场景说明

2.2.1 同步和协调多个协程之间共享资源

下面举一个使用 sync.Cond 的例子,用它来实现生产者-消费者模型。生产者往items放置元素,当items满了之后,便进入等待状态,等待消费者唤醒。消费者从items中取数据,当items空了之后,便进入等待状态,等待生产者唤醒。

这里多个协程对同一份数据进行操作,且需要基于该数据判断是否唤醒其他协程或进入阻塞状态,来实现多个协程的同步和协调。sync.Cond就适合在这种场景下使用,其正是为这种场景设计的。

package main

import (
        "fmt"
        "sync"
        "time"
)

type Queue struct {
        items []int
        cap   int
        lock  sync.Mutex
        cond  *sync.Cond
}

func NewQueue(cap int) *Queue {
        q := &Queue{
            items: make([]int, 0),
            cap:   cap,
        }
        q.cond = sync.NewCond(&q.lock)
        return q
}

func (q *Queue) Put(item int) {
        q.lock.Lock()
        defer q.lock.Unlock()

        for len(q.items) == q.cap {
                q.cond.Wait()
        }

        q.items = append(q.items, item)
        q.cond.Broadcast()
}

func (q *Queue) Get() int {
        q.lock.Lock()
        defer q.lock.Unlock()

        for len(q.items) == 0 {
            q.cond.Wait()
        }

        item := q.items[0]
        q.items = q.items[1:]
        q.cond.Broadcast()

        return item
}

func main() {
        q := NewQueue(10)

        // Producer
        go func() {
            for {
                q.Put(i)
                fmt.Printf("Producer: Put %d\n", i)
                time.Sleep(100 * time.Millisecond)
            }
        }()

        // Consumer
        go func() {
            for {
                    item := q.Get()
                    fmt.Printf("Consumer: Get %d\n", item)
                    time.Sleep(200 * time.Millisecond)
            }
        }()

        wg.Wait()
}

2.2.2 需要重复唤醒的场景中使用

在某些场景中,由于不满足某种条件,此时协程进入阻塞状态,等待条件满足后,由其他协程唤醒,再继续执行。在整个流程中,可能会多次进入阻塞状态,多次被唤醒的情况。

比如上面生产者和消费者模型的例子,生产者可能会产生一批任务,然后唤醒消费者,消费者消费完之后,会进入阻塞状态,等待下一批任务的到来。所以这个流程中,协程可能多次进入阻塞状态,然后再多次被唤醒。

sync.Cond能够实现即使协程多次进入阻塞状态,也能重复唤醒该协程。所以,当出现需要实现重复唤醒的场景时,使用sync.Cond也是非常合适的。

3. 原理

3.1 基本原理

Sync.Cond存在一个通知队列,保存了所有处于等待状态的协程。通知队列定义如下:

type notifyList struct {
   wait   uint32
   notify uint32
   lock   uintptr // key field of the mutex
   head   unsafe.Pointer
   tail   unsafe.Pointer
}

当调用Wait方法时,此时Wait方法会释放所持有的锁,然后将自己放到notifyList等待队列中等待。此时会将当前协程加入到等待队列的尾部,然后进入阻塞状态。

当调用Signal 时,此时会唤醒等待队列中的第一个协程,其他继续等待。如果此时没有处于等待状态的协程,调用Signal不会有其他作用,直接返回。当调用BoradCast方法时,则会唤醒notfiyList中所有处于等待状态的协程。

sync.Cond的代码实现比较简单,协程的唤醒和阻塞已经由运行时包实现了,sync.Cond的实现直接调用了运行时包提供的API。

3.2 实现

3.2.1 Wait方法实现

Wait方法首先调用runtime_notifyListAd方法,将自己加入到等待队列中,然后释放锁,等待其他协程的唤醒。

func (c *Cond) Wait() {
   // 将自己放到等待队列中
   t := runtime_notifyListAdd(&c.notify)
   // 释放锁
   c.L.Unlock()
   // 等待唤醒
   runtime_notifyListWait(&c.notify, t)
   // 重新获取锁
   c.L.Lock()
}

3.2.2 Singal方法实现

Singal方法调用runtime_notifyListNotifyOne唤醒等待队列中的一个协程。

func (c *Cond) Signal() {
   // 唤醒等待队列中的一个协程
   runtime_notifyListNotifyOne(&c.notify)
}

3.2.3 Broadcast方法实现

Broadcast方法调用runtime_notifyListNotifyAll唤醒所有处于等待状态的协程。

func (c *Cond) Broadcast() {
   // 唤醒等待队列中所有的协程
   runtime_notifyListNotifyAll(&c.notify)
}

4.使用注意事项

4.1 调用Wait方法前未加锁

在上面2.5已经说明了,调用Sync.Cond方法前需要加锁,否则有可能出现竞态条件。而且,现有的sync.Cond的实现,如果在调用Wait方法前未加锁,此时会直接panic,下面是一个简单例子的说明:

package main

import (
    "fmt"
    "sync"
    "time"
)

var (
   count int
   cond  *sync.Cond
   lk    sync.Mutex
)

func main() {
    cond = sync.NewCond(&lk)
    wg := sync.WaitGroup{}
    wg.Add(2)
    go func() {
       defer wg.Done()
       for {
          time.Sleep(time.Second)
          count++
          cond.Broadcast()
       }
    }()
    
    go func() {
       defer wg.Done()
       for {
          time.Sleep(time.Millisecond * 500)          
          //cond.L.Lock() 
          for count%10 != 0 {
               cond.Wait()
          }
          t.Logf("count = %d", count)
          //cond.L.Unlock()  
       }
    }()
    wg.Wait()
}

上面代码中,协程一每隔1s,将count字段的值自增1,然后唤醒所有处于等待状态的协程。协程二执行的条件为count的值为10的倍数,此时满足执行条件,唤醒后将会继续往下执行。

但是这里在调用sync.Wait方法前,没有先获取锁,下面是其执行结果,会抛出 fatal error: sync: unlock of unlocked mutex 错误,结果如下:

count = 0
fatal error: sync: unlock of unlocked mutex

因此,在调用Wait方法前,需要先获取到与sync.Cond关联的锁,否则会直接抛出异常。

4.2 Wait方法接收到通知后,未重新检查条件变量

调用sync.Wait方法,协程进入阻塞状态后被唤醒,没有重新检查条件变量,此时有可能仍然处于不满足条件变量的场景下。然后直接执行后续操作,有可能会导致程序出错。下面举一个简单的例子:

package main

import (
    "fmt"
    "sync"
    "time"
)

var (
   count int
   cond  *sync.Cond
   lk    sync.Mutex
)

func main() {
    cond = sync.NewCond(&lk)
    wg := sync.WaitGroup{}
    wg.Add(3)
    go func() {
       defer wg.Done()
       for {
          time.Sleep(time.Second)
          cond.L.Lock()
          // 将flag 设置为true
          flag = true
          // 唤醒所有处于等待状态的协程
          cond.Broadcast()
          cond.L.Unlock()
       }
    }()
    
    for i := 0; i < 2; i++ {
       go func(i int) {
          defer wg.Done()
          for {
             time.Sleep(time.Millisecond * 500)
             cond.L.Lock()
             // 不满足条件,此时进入等待状态
             if !flag {
                cond.Wait()
             }
             // 被唤醒后,此时可能仍然不满足条件
             fmt.Printf("协程 %d flag = %t", i, flag)
             flag = false
             cond.L.Unlock()
          }
       }(i)
    }
    wg.Wait()
}

在这个例子,我们启动了一个协程,定时将flag设置为true,相当于每隔一段时间,便满足执行条件,然后唤醒所有处于等待状态的协程。

然后又启动了两个协程,在满足条件的前提下,开始执行后续操作,但是这里协程被唤醒后,没有重新检查条件变量,具体看第39行。这里会出现的场景是,第一个协程被唤醒后,此时执行后续操作,然后将flag重新设置为false,此时已经不满足条件了。之后第二个协程唤醒后,获取到锁,没有重新检查此时是否满足执行条件,直接向下执行,这个就和我们预期不符,可能会导致程序出错,代码执行效果如下:

协程 1 flag = true
协程 0 flag = false
协程 1 flag = true
协程 0 flag = false

可以看到,此时协程0执行时,flag的值均为false,说明此时其实并不符合执行条件,可能会导致程序出错。因此正确用法应该像下面这样子,被唤醒后,需要重新检查条件变量,满足条件之后才能继续向下执行。

c.L.Lock()
// 唤醒后,重新检查条件变量是否满足条件
for !condition() {
    c.Wait()
}
// 满足条件情况下,执行的逻辑
c.L.Unlock()

5.总结

本文介绍了 Go 语言中的 sync.Cond 并发原语,它是用于实现 goroutine 之间的同步的重要工具。我们首先学习了 sync.Cond 的基本使用方法,包括创建和使用条件变量、使用WaitSignal/Broadcast方法等。

接着,我们对 sync.Cond 的使用场景进行了说明,如同步和协调多个协程之间共享资源等。

在接下来的部分中,我们介绍了 sync.Cond 的实现原理,主要是对等待队列的使用,从而sync.Cond有更好的理解,能够更好得使用它。同时,我们也讲述了使用sync.Cond的注意事项,如调用Wait方法前需要加锁等。

基于以上内容,本文完成了对 sync.Cond 的介绍,希望能够帮助大家更好地理解和使用Go语言中的并发原语。

推荐学习:Golang教程

위 내용은 Golang의 sync.Cond에 대해 자세히 이야기해 보겠습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 juejin.cn에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제