이 글에서는 sync.Cond
의 기본 사용법, 구현 원칙, 사용 주의 사항 및 일반적인 사용을 포함하여 Go 언어의 sync.Cond
동시성 기본 요소를 소개합니다. 사용 시나리오. 고루틴 간의 동기화를 달성하기 위해 Cond를 더 잘 이해하고 적용할 수 있습니다. sync.Cond
并发原语,包括 sync.Cond
的基本使用方法、实现原理、使用注意事项以及常见的使用使用场景。能够更好地理解和应用 Cond 来实现 goroutine 之间的同步。
sync.Cond
是Go语言标准库中的一个类型,代表条件变量。条件变量是用于多个goroutine之间进行同步和互斥的一种机制。sync.Cond
可以用于等待和通知goroutine,以便它们可以在特定条件下等待或继续执行。
sync.Cond
的定义如下,提供了Wait
,Singal
,Broadcast
以及NewCond
方法
type Cond struct { noCopy noCopy // L is held while observing or changing the condition L Locker notify notifyList checker copyChecker } func NewCond(l Locker) *Cond {} func (c *Cond) Wait() {} func (c *Cond) Signal() {} func (c *Cond) Broadcast() {}
NewCond
方法: 提供创建Cond
实例的方法Wait
方法: 使当前线程进入阻塞状态,等待其他协程唤醒Singal
方法: 唤醒一个等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。Broadcast
方法: 唤醒所有等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。当使用sync.Cond
时,通常需要以下几个步骤:
sync.Cond
对象,关联这个互斥锁;Wait
方法等待条件变量被通知;Signal
或Broadcast
方法通知等待的协程。下面是一个使用sync.Cond的简单示例,实现了一个生产者-消费者模型:
var ( // 1. 定义一个互斥锁 mu sync.Mutex cond *sync.Cond count int ) func init() { // 2.将互斥锁和sync.Cond进行关联 cond = sync.NewCond(&mu) } func worker(id int) { // 消费者 for { // 3. 在需要等待的地方,获取互斥锁,调用Wait方法等待被通知 mu.Lock() // 这里会不断循环判断 是否有待消费的任务 for count == 0 { cond.Wait() // 等待任务 } count-- fmt.Printf("worker %d: 处理了一个任务\n", id) // 5. 最后释放锁 mu.Unlock() } } func main() { // 启动5个消费者 for i := 1; i <= 5; i++ { go worker(i) } for { // 生产者 time.Sleep(1 * time.Second) mu.Lock() count++ // 4. 在需要等待的地方,获取互斥锁,调用BroadCast/Singal方法进行通知 cond.Broadcast() mu.Unlock() } }
在这个示例中,创建一个生产者在生产任务,同时创建五个消费者来消费任务。当任务数为0时,此时消费者会调用Wait
方法进入阻塞状态,等待生产者的通知。
当生产者产生任务后,使用Broadcast
方法通知所有的消费者,唤醒处于阻塞状态的消费者,开始消费任务。这里使用sync.Cond
实现多个协程之间的通信和同步。
这里的原因在于调用Wait
方法前如果不加锁,有可能会出现竞态条件。
这里假设多个协程都处于等待状态,然后一个协程调用了Broadcast唤醒了其中一个或多个协程,此时这些协程都会被唤醒。
如下,假设调用Wait
方法前没有加锁的话,那么所有协程都会去调用condition
方法去判断是否满足条件,然后都通过验证,执行后续操作。
for !condition() { c.Wait() } c.L.Lock() // 满足条件情况下,执行的逻辑 c.L.Unlock()
此时会出现的情况为,本来是需要在满足condition
方法的前提下,才能执行的操作。现在有可能的效果,为前面一部分协程执行时,还是满足condition
条件的;但是后面的协程,尽管不满足condition
条件,还是执行了后续操作,可能导致程序出错。
正确的用法应该是,在调用Wait
方法前便加锁,那么即使多个协程被唤醒,一次也只会有一个协程判断是否满足condition
条件,然后执行后续操作。这样子就不会出现多个协程同时判断,导致不满足条件,也执行后续操作的情况出现。
c.L.Lock() for !condition() { c.Wait() } // 满足条件情况下,执行的逻辑 c.L.Unlock()
sync.Cond
是为了协调多个协程之间对共享数据的访问而设计的。使用sync.Cond
的场景通常都涉及到对共享数据的操作,如果没有共享数据的操作,那么没有太大必要使用sync.Cond
来进行协调。当然,如果存在重复唤醒的场景,即使没有对共享数据的操作,也是可以使用sync.Cond
来进行协调的。
通常情况下,使用sync.Cond
동기화. Cond
는 조건 변수를 나타내는 Go 언어 표준 라이브러리의 유형입니다. 조건 변수는 여러 고루틴 간의 동기화 및 상호 배제를 위한 메커니즘입니다. sync.Cond
는 특정 조건에서 실행을 기다리거나 계속할 수 있도록 고루틴을 기다리고 알리는 데 사용할 수 있습니다. 🎜sync.Cond
는 다음과 같이 정의하고 Wait
code>는 code>, Singal
, Broadcast
및 NewCond
메소드🎜package main import ( "fmt" "sync" "time" ) type Queue struct { items []int cap int lock sync.Mutex cond *sync.Cond } func NewQueue(cap int) *Queue { q := &Queue{ items: make([]int, 0), cap: cap, } q.cond = sync.NewCond(&q.lock) return q } func (q *Queue) Put(item int) { q.lock.Lock() defer q.lock.Unlock() for len(q.items) == q.cap { q.cond.Wait() } q.items = append(q.items, item) q.cond.Broadcast() } func (q *Queue) Get() int { q.lock.Lock() defer q.lock.Unlock() for len(q.items) == 0 { q.cond.Wait() } item := q.items[0] q.items = q.items[1:] q.cond.Broadcast() return item } func main() { q := NewQueue(10) // Producer go func() { for { q.Put(i) fmt.Printf("Producer: Put %d\n", i) time.Sleep(100 * time.Millisecond) } }() // Consumer go func() { for { item := q.Get() fmt.Printf("Consumer: Get %d\n", item) time.Sleep(200 * time.Millisecond) } }() wg.Wait() }
NewCond
를 제공합니다. 메서드: 생성 Cond
인스턴스 메서드 제공Wait
메서드: 현재 스레드를 차단 상태로 두고 다른 코루틴이 깨어날 때까지 기다립니다. Singal
메서드: 조건 변수를 기다리는 스레드를 깨웁니다. 대기 중인 스레드가 없으면 메서드가 즉시 반환됩니다. Broadcast
메서드: 조건 변수를 기다리고 있는 모든 스레드를 깨웁니다. 대기 중인 스레드가 없으면 메서드가 즉시 반환됩니다. sync.Cond
를 사용할 때 일반적으로 다음과 같습니다. 다음 단계가 필요합니다. 🎜sync.Cond
개체를 만들고 이 뮤텍스 잠금을 연결합니다. li>조건 변수를 기다려야 하는 경우 이 뮤텍스 잠금을 획득하고 Wait
메서드를 사용하여 조건 변수가 알림을 받을 때까지 기다립니다. Signal
또는 Broadcast
메서드를 사용하여 대기 중인 코루틴에 알립니다. type notifyList struct { wait uint32 notify uint32 lock uintptr // key field of the mutex head unsafe.Pointer tail unsafe.Pointer }🎜이 예에서는 작업을 생산하기 위해 생산자를 만들고, 작업을 소비하기 위해 5명의 소비자를 만듭니다. 작업 수가 0이면 소비자는
Wait
메서드를 호출하여 차단 상태로 들어가고 생산자의 알림을 기다립니다. 🎜🎜Producer가 태스크를 생성하면 Broadcast
메서드를 사용하여 모든 Consumer에게 알리고, 차단된 Consumer를 깨우고 Task 소비를 시작합니다. sync.Cond
는 여기에서 여러 코루틴 간의 통신 및 동기화를 달성하는 데 사용됩니다. 🎜Wait
메서드 전에 잠그지 않으면 경쟁 조건이 발생할 수 있습니다. 🎜🎜여기에서는 여러 코루틴이 대기 상태에 있고 코루틴이 Broadcast를 호출하여 하나 이상의 코루틴을 깨운다고 가정합니다. 🎜🎜다음과 같이 Wait
메서드를 호출하기 전에 잠금이 없다고 가정하면 모든 코루틴은 condition
메서드를 호출하여 조건이 충족되는지 확인한 다음 확인하고 후속 작업을 실행합니다. 🎜func (c *Cond) Wait() { // 将自己放到等待队列中 t := runtime_notifyListAdd(&c.notify) // 释放锁 c.L.Unlock() // 等待唤醒 runtime_notifyListWait(&c.notify, t) // 重新获取锁 c.L.Lock() }🎜 이때 일어나는 일은
조건
메서드가 만족되어야만 작업을 수행할 수 있다는 것입니다. 이제 코루틴의 이전 부분이 실행될 때 조건
을 충족하지만 후속 코루틴은 조건
을 충족하지 않습니다. 조건이 계속 실행되면 프로그램 오류가 발생할 수 있습니다. 🎜🎜올바른 사용법은 Wait
메서드를 호출하기 전에 잠그는 것입니다. 그러면 여러 코루틴이 활성화되더라도 한 번에 하나의 코루틴만 조건이 충족되는지 여부를 판단합니다. > 조건을 지정한 후 후속 작업을 수행합니다. 이렇게 하면 여러 개의 코루틴이 동시에 판단되지 않아 조건이 충족되지 않고 후속 작업이 수행되는 상황이 발생합니다. 🎜<pre class="brush:js;toolbar:false;">func (c *Cond) Signal() {
// 唤醒等待队列中的一个协程
runtime_notifyListNotifyOne(&c.notify)
}</pre><h2><strong>2. 사용 시나리오</strong></h2>
<h3 data-id="heading-8"><strong>2.1 기본 지침</strong></h3>🎜<code> sync.Cond
는 여러 코루틴 간의 공유 데이터에 대한 액세스를 조정하도록 설계되었습니다. sync.Cond
사용 시나리오에는 일반적으로 공유 데이터 작업이 포함됩니다. 공유 데이터가 없으면 작업을 사용할 필요가 없습니다. sync.Cond
를 사용하여 조정합니다. 물론, wake-up이 반복되는 시나리오가 있다면, 공유 데이터에 대한 연산이 없더라도 sync.Cond
를 사용하여 조정을 할 수 있습니다. 🎜🎜일반적으로 sync.Cond
를 사용하는 시나리오는 여러 코루틴이 동일한 공유 데이터에 액세스해야 하며 공유 데이터에 액세스하거나 수정하기 전에 특정 조건이 충족될 때까지 기다려야 한다는 것입니다. 데이터. 🎜在这些场景下,使用sync.Cond
可以方便地实现对共享数据的协调,避免了多个协程之间的竞争和冲突,保证了共享数据的正确性和一致性。因此,如果没有涉及到共享数据的操作,就没有必要使用sync.Cond
来进行协调。
下面举一个使用 sync.Cond
的例子,用它来实现生产者-消费者模型。生产者往items
放置元素,当items
满了之后,便进入等待状态,等待消费者唤醒。消费者从items
中取数据,当items
空了之后,便进入等待状态,等待生产者唤醒。
这里多个协程对同一份数据进行操作,且需要基于该数据判断是否唤醒其他协程或进入阻塞状态,来实现多个协程的同步和协调。sync.Cond
就适合在这种场景下使用,其正是为这种场景设计的。
package main import ( "fmt" "sync" "time" ) type Queue struct { items []int cap int lock sync.Mutex cond *sync.Cond } func NewQueue(cap int) *Queue { q := &Queue{ items: make([]int, 0), cap: cap, } q.cond = sync.NewCond(&q.lock) return q } func (q *Queue) Put(item int) { q.lock.Lock() defer q.lock.Unlock() for len(q.items) == q.cap { q.cond.Wait() } q.items = append(q.items, item) q.cond.Broadcast() } func (q *Queue) Get() int { q.lock.Lock() defer q.lock.Unlock() for len(q.items) == 0 { q.cond.Wait() } item := q.items[0] q.items = q.items[1:] q.cond.Broadcast() return item } func main() { q := NewQueue(10) // Producer go func() { for { q.Put(i) fmt.Printf("Producer: Put %d\n", i) time.Sleep(100 * time.Millisecond) } }() // Consumer go func() { for { item := q.Get() fmt.Printf("Consumer: Get %d\n", item) time.Sleep(200 * time.Millisecond) } }() wg.Wait() }
在某些场景中,由于不满足某种条件,此时协程进入阻塞状态,等待条件满足后,由其他协程唤醒,再继续执行。在整个流程中,可能会多次进入阻塞状态,多次被唤醒的情况。
比如上面生产者和消费者模型的例子,生产者可能会产生一批任务,然后唤醒消费者,消费者消费完之后,会进入阻塞状态,等待下一批任务的到来。所以这个流程中,协程可能多次进入阻塞状态,然后再多次被唤醒。
sync.Cond
能够实现即使协程多次进入阻塞状态,也能重复唤醒该协程。所以,当出现需要实现重复唤醒的场景时,使用sync.Cond
也是非常合适的。
在Sync.Cond
存在一个通知队列,保存了所有处于等待状态的协程。通知队列定义如下:
type notifyList struct { wait uint32 notify uint32 lock uintptr // key field of the mutex head unsafe.Pointer tail unsafe.Pointer }
当调用Wait
方法时,此时Wait
方法会释放所持有的锁,然后将自己放到notifyList
等待队列中等待。此时会将当前协程加入到等待队列的尾部,然后进入阻塞状态。
当调用Signal
时,此时会唤醒等待队列中的第一个协程,其他继续等待。如果此时没有处于等待状态的协程,调用Signal
不会有其他作用,直接返回。当调用BoradCast
方法时,则会唤醒notfiyList
中所有处于等待状态的协程。
sync.Cond
的代码实现比较简单,协程的唤醒和阻塞已经由运行时包实现了,sync.Cond
的实现直接调用了运行时包提供的API。
Wait
方法首先调用runtime_notifyListAd
方法,将自己加入到等待队列中,然后释放锁,等待其他协程的唤醒。
func (c *Cond) Wait() { // 将自己放到等待队列中 t := runtime_notifyListAdd(&c.notify) // 释放锁 c.L.Unlock() // 等待唤醒 runtime_notifyListWait(&c.notify, t) // 重新获取锁 c.L.Lock() }
Singal
方法调用runtime_notifyListNotifyOne
唤醒等待队列中的一个协程。
func (c *Cond) Signal() { // 唤醒等待队列中的一个协程 runtime_notifyListNotifyOne(&c.notify) }
Broadcast
方法调用runtime_notifyListNotifyAll
唤醒所有处于等待状态的协程。
func (c *Cond) Broadcast() { // 唤醒等待队列中所有的协程 runtime_notifyListNotifyAll(&c.notify) }
在上面2.5已经说明了,调用Sync.Cond
方法前需要加锁,否则有可能出现竞态条件。而且,现有的sync.Cond
的实现,如果在调用Wait
方法前未加锁,此时会直接panic
,下面是一个简单例子的说明:
package main import ( "fmt" "sync" "time" ) var ( count int cond *sync.Cond lk sync.Mutex ) func main() { cond = sync.NewCond(&lk) wg := sync.WaitGroup{} wg.Add(2) go func() { defer wg.Done() for { time.Sleep(time.Second) count++ cond.Broadcast() } }() go func() { defer wg.Done() for { time.Sleep(time.Millisecond * 500) //cond.L.Lock() for count%10 != 0 { cond.Wait() } t.Logf("count = %d", count) //cond.L.Unlock() } }() wg.Wait() }
上面代码中,协程一每隔1s,将count字段的值自增1,然后唤醒所有处于等待状态的协程。协程二执行的条件为count的值为10的倍数,此时满足执行条件,唤醒后将会继续往下执行。
但是这里在调用sync.Wait
方法前,没有先获取锁,下面是其执行结果,会抛出 fatal error: sync: unlock of unlocked mutex 错误,结果如下:
count = 0 fatal error: sync: unlock of unlocked mutex
因此,在调用Wait
方法前,需要先获取到与sync.Cond
关联的锁,否则会直接抛出异常。
调用sync.Wait
方法,协程进入阻塞状态后被唤醒,没有重新检查条件变量,此时有可能仍然处于不满足条件变量的场景下。然后直接执行后续操作,有可能会导致程序出错。下面举一个简单的例子:
package main import ( "fmt" "sync" "time" ) var ( count int cond *sync.Cond lk sync.Mutex ) func main() { cond = sync.NewCond(&lk) wg := sync.WaitGroup{} wg.Add(3) go func() { defer wg.Done() for { time.Sleep(time.Second) cond.L.Lock() // 将flag 设置为true flag = true // 唤醒所有处于等待状态的协程 cond.Broadcast() cond.L.Unlock() } }() for i := 0; i < 2; i++ { go func(i int) { defer wg.Done() for { time.Sleep(time.Millisecond * 500) cond.L.Lock() // 不满足条件,此时进入等待状态 if !flag { cond.Wait() } // 被唤醒后,此时可能仍然不满足条件 fmt.Printf("协程 %d flag = %t", i, flag) flag = false cond.L.Unlock() } }(i) } wg.Wait() }
在这个例子,我们启动了一个协程,定时将flag
设置为true,相当于每隔一段时间,便满足执行条件,然后唤醒所有处于等待状态的协程。
然后又启动了两个协程,在满足条件的前提下,开始执行后续操作,但是这里协程被唤醒后,没有重新检查条件变量,具体看第39行。这里会出现的场景是,第一个协程被唤醒后,此时执行后续操作,然后将flag
重新设置为false,此时已经不满足条件了。之后第二个协程唤醒后,获取到锁,没有重新检查此时是否满足执行条件,直接向下执行,这个就和我们预期不符,可能会导致程序出错,代码执行效果如下:
协程 1 flag = true 协程 0 flag = false 协程 1 flag = true 协程 0 flag = false
可以看到,此时协程0执行时,flag
的值均为false
,说明此时其实并不符合执行条件,可能会导致程序出错。因此正确用法应该像下面这样子,被唤醒后,需要重新检查条件变量,满足条件之后才能继续向下执行。
c.L.Lock() // 唤醒后,重新检查条件变量是否满足条件 for !condition() { c.Wait() } // 满足条件情况下,执行的逻辑 c.L.Unlock()
本文介绍了 Go 语言中的 sync.Cond 并发原语,它是用于实现 goroutine 之间的同步的重要工具。我们首先学习了 sync.Cond
的基本使用方法,包括创建和使用条件变量、使用Wait
和Signal
/Broadcast
方法等。
接着,我们对 sync.Cond
的使用场景进行了说明,如同步和协调多个协程之间共享资源等。
在接下来的部分中,我们介绍了 sync.Cond
的实现原理,主要是对等待队列的使用,从而sync.Cond
有更好的理解,能够更好得使用它。同时,我们也讲述了使用sync.Cond
的注意事项,如调用Wait
方法前需要加锁等。
基于以上内容,本文完成了对 sync.Cond
的介绍,希望能够帮助大家更好地理解和使用Go语言中的并发原语。
推荐学习:Golang教程
위 내용은 Golang의 sync.Cond에 대해 자세히 이야기해 보겠습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!