>  기사  >  데이터 베이스  >  Redis에서 분산 잠금을 구현하는 5가지 방법 요약

Redis에서 분산 잠금을 구현하는 5가지 방법 요약

WBOY
WBOY앞으로
2022-09-14 17:56:472451검색

추천 학습: Redis 비디오 튜토리얼

단일 애플리케이션에서 공유 데이터를 잠그지 않으면 일반적으로 데이터 일관성 문제가 발생합니다.

분산 아키텍처에서는 데이터 공유 작업 문제도 발생합니다. 이 기사에서는 분산 아키텍처의 데이터 일관성 문제를 해결하기 위해 Redis를 사용합니다. Redis来解决分布式架构中的数据一致性问题。

1. 单机数据一致性

单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。

场景描述:客户端模拟购买商品过程,在Redis中设定库存总数剩100,多个客户端同时并发购买。

@RestController
public class IndexController1 {

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy1")
    public String index(){
        // Redis中存有goods:001号商品,数量为100
        String result = template.opsForValue().get("goods:001");
        // 获取到剩余商品数
        int total = result == null ? 0 : Integer.parseInt(result);
        if( total > 0 ){
            // 剩余商品数大于0 ,则进行扣减
            int realTotal = total -1;
            // 将商品数回写数据库
            template.opsForValue().set("goods:001",String.valueOf(realTotal));
            System.out.println("购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001");
            return "购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001";
        }else{
            System.out.println("购买商品失败,服务端口为8001");
        }
        return "购买商品失败,服务端口为8001";
    }
}

使用Jmeter模拟高并发场景,测试结果如下:

测试结果出现多个用户购买同一商品,发生了数据不一致问题!

解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性

  • synchronized
  • ReentrantLock
@RestController
public class IndexController2 {
// 使用ReentrantLock锁解决单体应用的并发问题
Lock lock = new ReentrantLock();

@Autowired
StringRedisTemplate template;

@RequestMapping("/buy2")
public String index() {

    lock.lock();
    try {
        String result = template.opsForValue().get("goods:001");
        int total = result == null ? 0 : Integer.parseInt(result);
        if (total > 0) {
            int realTotal = total - 1;
            template.opsForValue().set("goods:001", String.valueOf(realTotal));
            System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
            return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
        } else {
            System.out.println("购买商品失败,服务端口为8001");
        }
    } catch (Exception e) {
        lock.unlock();
    } finally {
        lock.unlock();
    }
    return "购买商品失败,服务端口为8001";
}
}

2. 分布式数据一致性

上面解决了单体应用的数据一致性问题,但如果是分布式架构部署呢,架构如下:

提供两个服务,端口分别为80018002,连接同一个Redis服务,在服务前面有一台Nginx作为负载均衡

两台服务代码相同,只是端口不同

80018002两个服务启动,每个服务依然用ReentrantLock加锁,用Jmeter做并发测试,发现会出现数据一致性问题!

3. Redis实现分布式锁

3.1 方式一

取消单机锁,下面使用redisset命令来实现分布式加锁

SET KEY VALUE [EX seconds] [PX milliseconds] [NX|XX]

  • EX seconds 设置指定的到期时间(以秒为单位)
  • PX milliseconds 设置指定的到期时间(以毫秒为单位)
  • NX 仅在键不存在时设置键
  • XX 只有在键已存在时才设置
@RestController
public class IndexController4 {

    // Redis分布式锁的key
    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy4")
    public String index(){

        // 每个人进来先要进行加锁,key值为"good_lock",value随机生成
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            // 加锁
            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value);
            // 加锁失败
            if(!flag){
                return "抢锁失败!";
            }
            System.out.println( value+ " 抢锁成功");
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                // 如果在抢到所之后,删除锁之前,发生了异常,锁就无法被释放,
                // 释放锁操作不能在此操作,要在finally处理
				// template.delete(REDIS_LOCK);
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            // 释放锁
            template.delete(REDIS_LOCK);
        }
    }
}

上面的代码,可以解决分布式架构中数据一致性问题。但再仔细想想,还是会有问题,下面进行改进。

3.2 方式二(改进方式一)

在上面的代码中,如果程序在运行期间,部署了微服务jar包的机器突然挂了,代码层面根本就没有走到finally代码块,也就是说在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁

所以,这里需要对这个key加一个过期时间,Redis中设置过期时间有两种方法:

  • template.expire(REDIS_LOCK,10, TimeUnit.SECONDS)
  • template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS)

第一种方法需要单独的一行代码,且并没有与加锁放在同一步操作,所以不具备原子性,也会出问题

第二种方法在加锁的同时就进行了设置过期时间,所有没有问题,这里采用这种方式

调整下代码,在加锁的同时,设置过期时间:

// 为key加一个过期时间,其余代码不变
Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK,value,10L,TimeUnit.SECONDS);

这种方式解决了因服务突然宕机而无法释放锁的问题。但再仔细想想,还是会有问题,下面进行改进。

3.3 方式三(改进方式二)

方式二设置了key的过期时间,解决了key

1. 단일 머신 데이터 일관성

아래 그림은 단일 머신 데이터 일관성 아키텍처를 보여줍니다. 여러 클라이언트가 동일한 서버에 액세스하고 동일한 데이터베이스에 연결할 수 있습니다. 🎜

🎜🎜장면 설명: 클라이언트는 상품 구매 과정을 시뮬레이션하고 Redis의 총 재고를 100개의 조각으로 설정합니다. 🎜

🎜

@RestController
public class IndexController6 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy6")
    public String index(){

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            // 为key加一个过期时间
            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);

            // 加锁失败
            if(!flag){
                return "抢锁失败!";
            }
            System.out.println( value+ " 抢锁成功");
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            // 谁加的锁,谁才能删除!!!!
            if(template.opsForValue().get(REDIS_LOCK).equals(value)){
                template.delete(REDIS_LOCK);
            }
        }
    }
}
🎜Jmeter를 사용하여 높은 동시성 시나리오를 시뮬레이션합니다. 테스트 결과는 다음과 같습니다. 🎜

🎜🎜테스트 결과, 여러 사용자가 동일한 상품을 구매하였고, 데이터 불일치가 발생한 것으로 나타났습니다! 🎜🎜해결책: 단일 애플리케이션의 경우 동시 작업을 잠가서 데이터 작업이 원자적으로🎜

  • 동기화
  • ReentrantLock되도록 합니다. 코드>
@RestController
public class IndexController7 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy7")
    public String index(){

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            // 为key加一个过期时间
            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);
            // 加锁失败
            if(!flag){
                return "抢锁失败!";
            }
            System.out.println( value+ " 抢锁成功");
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            // 谁加的锁,谁才能删除,使用Lua脚本,进行锁的删除

            Jedis jedis = null;
            try{
                jedis = RedisUtils.getJedis();

                String script = "if redis.call('get',KEYS[1]) == ARGV[1] " +
                        "then " +
                        "return redis.call('del',KEYS[1]) " +
                        "else " +
                        "   return 0 " +
                        "end";

                Object eval = jedis.eval(script, Collections.singletonList(REDIS_LOCK), Collections.singletonList(value));
                if("1".equals(eval.toString())){
                    System.out.println("-----del redis lock ok....");
                }else{
                    System.out.println("-----del redis lock error ....");
                }
            }catch (Exception e){

            }finally {
                if(null != jedis){
                    jedis.close();
                }
            }
        }
    }
}

🎜

2. 분산 데이터 일관성

🎜위는 단일 애플리케이션의 데이터 일관성 문제를 해결하지만 분산된 경우 아키텍처 배포의 경우 아키텍처는 다음과 같습니다. 🎜🎜 두 가지 서비스를 제공합니다. 포트는 8001, 8002이며 동일한 Redis 서비스에 연결되어 있습니다. code>Nginx가 로드 밸런서 역할을 합니다🎜

🎜🎜두 서비스 코드는 같지만 포트가 다릅니다🎜🎜두 서비스 8001, 8002를 시작하세요 >. 각 서비스는 여전히 ReentrantLock으로 잠겨 있으며, 동시성 테스트에 Jmeter가 사용되는 것으로 확인되었습니다. 🎜

🎜

3. Redis는 분산 잠금을 구현합니다.

3.1 방법 1

🎜독립형 잠금을 취소하려면 redisset 명령을 사용하세요. /code> 아래 분산 잠금을 구현하려면🎜🎜SET KEY VALUE [EX 초] [PX 밀리초] [NX|XX]🎜
  • EX 초는 지정된 만료 시간(초)을 설정합니다.
  • PX 밀리초는 지정된 만료 시간을 밀리초 단위로 설정합니다.
  • NX 키가 없는 경우에만 키를 설정합니다.
  • XX 키가 이미 있는 경우에만 키를 설정합니다.
  • li>
@RestController
public class IndexController8 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @Autowired
    Redisson redisson;

    @RequestMapping("/buy8")
    public String index(){

        RLock lock = redisson.getLock(REDIS_LOCK);
        lock.lock();

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            if(lock.isLocked() && lock.isHeldByCurrentThread()){
                lock.unlock();
            }
        }
    }
}
🎜위 코드는 분산 아키텍처의 데이터 일관성 문제를 해결할 수 있습니다. 하지만 좀 더 곰곰이 생각해 보면 여전히 문제가 있을 수 있습니다. 🎜

3.2 방법 2(개선 방법 1)

🎜위 코드에서 마이크로서비스 jar 패키지가 배포된 머신이 프로그램 실행 중에 갑자기 멈추는 경우, 코드는 level finally 코드 블록에 전혀 도달하지 않았습니다. 이는 종료 전에 잠금이 삭제되지 않았음을 의미합니다. 이 경우 잠금 해제를 보장할 방법이 없습니다🎜🎜여기서 필요합니다. 이 를 확인하려면 만료 시간을 추가하세요. Redis에서 만료 시간을 설정하는 방법에는 두 가지가 있습니다: 🎜
  • template.expire(REDIS_LOCK ,10, TimeUnit.SECONDS)
  • template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS)
🎜첫 번째 방법은 별도의 A라인 코드가 필요하고 잠금과 동일한 단계에 배치되지 않아 원자성이 없으며 두 번째 방법은 잠금과 동시에 만료 시간을 설정하므로 문제가 발생합니다. 여기서는 이 방법을 사용합니다. 🎜🎜 잠금 중에 코드를 조정하고 만료 시간을 설정합니다. 🎜rrreee🎜 이 방법은 갑작스러운 서비스 중단으로 인해 잠금을 해제할 수 없는 문제를 해결합니다. 하지만 좀 더 곰곰이 생각해 보면 여전히 문제가 있을 수 있습니다. 🎜

3.3 방법 3(개선된 방법 2)

🎜방법 2는 의 만료 시간을 설정하여 를 삭제할 수 없는 문제를 해결합니다. 그런데 문제가 또 발생합니다 🎜

上面设置了key的过期时间为10秒,如果业务逻辑比较复杂,需要调用其他微服务,处理时间需要15秒(模拟场

景,别较真),而当10秒钟过去之后,这个key就过期了,其他请求就又可以设置这个key,此时如果耗时15

的请求处理完了,回来继续执行程序,就会把别人设置的key给删除了,这是个很严重的问题!

所以,谁上的锁,谁才能删除

@RestController
public class IndexController6 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy6")
    public String index(){

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            // 为key加一个过期时间
            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);

            // 加锁失败
            if(!flag){
                return "抢锁失败!";
            }
            System.out.println( value+ " 抢锁成功");
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            // 谁加的锁,谁才能删除!!!!
            if(template.opsForValue().get(REDIS_LOCK).equals(value)){
                template.delete(REDIS_LOCK);
            }
        }
    }
}

这种方式解决了因服务处理时间太长而释放了别人锁的问题。这样就没问题了吗?

3.4 方式四(改进方式三)

在上面方式三下,规定了谁上的锁,谁才能删除,但finally快的判断和del删除操作不是原子操作,并发的时候也会出问题,并发嘛,就是要保证数据的一致性,保证数据的一致性,最好要保证对数据的操作具有原子性。

Redisset命令介绍中,最后推荐Lua脚本进行锁的删除,地址

@RestController
public class IndexController7 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @RequestMapping("/buy7")
    public String index(){

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            // 为key加一个过期时间
            Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);
            // 加锁失败
            if(!flag){
                return "抢锁失败!";
            }
            System.out.println( value+ " 抢锁成功");
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            // 谁加的锁,谁才能删除,使用Lua脚本,进行锁的删除

            Jedis jedis = null;
            try{
                jedis = RedisUtils.getJedis();

                String script = "if redis.call('get',KEYS[1]) == ARGV[1] " +
                        "then " +
                        "return redis.call('del',KEYS[1]) " +
                        "else " +
                        "   return 0 " +
                        "end";

                Object eval = jedis.eval(script, Collections.singletonList(REDIS_LOCK), Collections.singletonList(value));
                if("1".equals(eval.toString())){
                    System.out.println("-----del redis lock ok....");
                }else{
                    System.out.println("-----del redis lock error ....");
                }
            }catch (Exception e){

            }finally {
                if(null != jedis){
                    jedis.close();
                }
            }
        }
    }
}

3.5 方式五(改进方式四)

在方式四下,规定了谁上的锁,谁才能删除,并且解决了删除操作没有原子性问题。但还没有考虑缓存续命,以及Redis集群部署下,异步复制造成的锁丢失:主节点没来得及把刚刚set进来这条数据给从节点,就挂了。所以直接上RedLockRedisson落地实现。

@RestController
public class IndexController8 {

    public static final String REDIS_LOCK = "good_lock";

    @Autowired
    StringRedisTemplate template;

    @Autowired
    Redisson redisson;

    @RequestMapping("/buy8")
    public String index(){

        RLock lock = redisson.getLock(REDIS_LOCK);
        lock.lock();

        // 每个人进来先要进行加锁,key值为"good_lock"
        String value = UUID.randomUUID().toString().replace("-","");
        try{
            String result = template.opsForValue().get("goods:001");
            int total = result == null ? 0 : Integer.parseInt(result);
            if (total > 0) {
                // 如果在此处需要调用其他微服务,处理时间较长。。。
                int realTotal = total - 1;
                template.opsForValue().set("goods:001", String.valueOf(realTotal));
                System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");
                return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";
            } else {
                System.out.println("购买商品失败,服务端口为8001");
            }
            return "购买商品失败,服务端口为8001";
        }finally {
            if(lock.isLocked() && lock.isHeldByCurrentThread()){
                lock.unlock();
            }
        }
    }
}

推荐学习:Redis视频教程

위 내용은 Redis에서 분산 잠금을 구현하는 5가지 방법 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 jb51.net에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제