찾다
데이터 베이스MySQL 튜토리얼MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

이 기사의 데이터 용량은 100W입니다. 수천만 개를 원한다면 양을 늘리면 됩니다. 단, rand() 또는 uuid()를 대량으로 사용하면 성능이 저하됩니다

Background

문의 운영 성능 테스트나 SQL 최적화를 수행할 때 실제 온라인 환경을 시뮬레이션하기 위한 테스트를 위해 오프라인 환경에서 대량의 기본 데이터를 구축해야 하는 경우가 많습니다.

말도 안 되는 소리, 온라인 테스트를 못하게 하면 DBA에게 해킹당해 죽는다

테스트 데이터 생성 방법

    1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐)
    2. 编写存储过程和函数执行(本文实现方式1)
    3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒)
    4. 一行一行手动插入,(WTF,去死吧)

기본 테이블 구조 생성

어떤 방법을 사용해도 나는 거기에 삽입하고 싶어요 테이블은 항상 생성되어야 합니다

CREATE TABLE `t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

방법 1: 저장 프로시저 및 메모리 테이블 사용

  • 메모리 테이블 생성

利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中

CREATE TABLE `t_user_memory` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;
  • 함수 및 저장 프로시저 생성

# 创建随机字符串和随机时间的函数
mysql> delimiter $$
mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
    ->     DECLARE return_str varchar(255) DEFAULT '' ;
    ->     DECLARE i INT DEFAULT 0;
    ->     WHILE i          SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1));
    ->         SET i = i + 1;
    ->     END WHILE;
    ->     RETURN return_str;
    -> END$$
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE sub INT DEFAULT 0;
    ->     DECLARE ret DATETIME;
    ->     SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd));
    ->     SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND);
    ->     RETURN ret;
    -> END $$

mysql> delimiter ;

# 创建插入数据存储过程
mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int)
    -> BEGIN
    ->     DECLARE i INT DEFAULT 1;
    ->     WHILE (i          INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW());
    ->         SET i = i + 1;
    ->     END WHILE;
    -> END
    -> $$
Query OK, 0 rows affected (0.01 sec)
  • 저장 프로시저 호출

mysql> CALL add_t_user_memory(1000000);
ERROR 1114 (HY000): The table 't_user_memory' is full
出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试
  • 메모리 테이블에서 일반 테이블에 삽입

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
방법 2: 임시 테이블을 사용하여

  • 임시 데이터 테이블 생성 tmp_table

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
  • 사용 파이썬이나 배쉬 100w 기록 데이터 파일 생성 (파이썬은 즉시 생성됩니다)

python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt
  • 임시 테이블 tmp_table로 데이터 가져오기

mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table;
Query OK, 1000000 rows affected (2.55 sec)
Records: 1000000  Deleted: 0  Skipped: 0  Warnings: 0

千万级数据 20秒插入完成
참고: mysql은 데이터를 가져올 때 오류가 보고될 수 있습니다. 기본적으로 secure_file_priv가 활성화되어 있습니다(이 매개변수는 LOAD DATA, SELECT... INTO OUTFILE 문 및 LOAD_FILE() 함수 실행과 같은 데이터 가져오기 및 내보내기 작업의 효과를 제한하는 데 사용됩니다. 이러한 작업을 수행하려면 사용자에게 FILE 권한이 있어야 합니다. )

해결책: mysql 구성 파일(my.ini 또는 my.conf)에 secure_file_priv = /Users/LJTjintao/temp/`를 추가한 다음 mysql을 다시 시작하여 문제를 해결하세요

MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

  • 임시 테이블을 기본 데이터로 사용하여 t_user에 데이터 삽입, 100W 데이터 삽입에 10.37초 소요

mysql> INSERT INTO t_user
    ->   SELECT
    ->     id,
    ->     uuid(),
    ->     CONCAT('userNickName', id),
    ->     FLOOR(Rand() * 1000),
    ->     FLOOR(Rand() * 100),
    ->     NOW()
    ->   FROM
    ->     tmp_table;
Query OK, 1000000 rows affected (10.37 sec)
Records: 1000000  Duplicates: 0  Warnings: 0
  • 삽입된 데이터의 생성 시간이 더 무작위로 생성되도록 생성 시간 필드 업데이트

UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);

Query OK, 1000000 rows affected (5.21 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0

mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);


Query OK, 1000000 rows affected (4.77 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0
mysql> select * from t_user limit 30;
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
| id | c_user_id                            | c_name         | c_province_id | c_city_id | create_time         |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
|  1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1  |            84 |        64 | 2015-11-13 21:13:19 |
|  2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2  |           967 |        90 | 2019-11-13 20:19:33 |
|  3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3  |           623 |        40 | 2014-11-13 20:57:46 |
|  4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4  |           140 |        49 | 2016-11-13 20:50:11 |
|  5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5  |            47 |        75 | 2016-11-13 21:17:38 |
|  6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6  |           642 |        94 | 2015-11-13 20:57:36 |
|  7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7  |           780 |         7 | 2015-11-13 20:55:07 |
|  8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8  |            39 |        96 | 2017-11-13 21:42:46 |
|  9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9  |           731 |        74 | 2015-11-13 22:48:30 |
| 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 |           534 |        43 | 2016-11-13 22:54:10 |
| 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 |           572 |        55 | 2018-11-13 20:05:19 |
| 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 |            71 |        68 | 2014-11-13 20:44:04 |
| 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 |           204 |        97 | 2019-11-13 20:24:23 |
| 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 |           249 |        32 | 2019-11-13 22:49:43 |
| 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 |           900 |        51 | 2019-11-13 20:55:26 |
| 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 |           854 |        74 | 2018-11-13 22:07:58 |
| 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 |           136 |        46 | 2013-11-13 21:53:34 |
| 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 |           897 |        10 | 2018-11-13 20:03:55 |
| 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 |           829 |        83 | 2013-11-13 20:38:54 |
| 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 |           683 |        91 | 2019-11-13 20:02:42 |
| 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 |           511 |        81 | 2013-11-13 21:16:48 |
| 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 |           562 |        35 | 2019-11-13 20:15:52 |
| 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 |            91 |        39 | 2016-11-13 20:28:59 |
| 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 |           677 |        21 | 2016-11-13 21:37:15 |
| 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 |            50 |        60 | 2018-11-13 20:39:20 |
| 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 |           856 |        47 | 2018-11-13 21:24:53 |
| 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 |           816 |        65 | 2014-11-13 22:06:26 |
| 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 |           806 |         7 | 2019-11-13 20:17:30 |
| 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 |           973 |        63 | 2014-11-13 21:08:09 |
| 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 |           237 |        29 | 2018-11-13 21:48:17 |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
30 rows in set (0.01 sec)

더 많은 MySQL 관련 기술 기사를 보려면 MySQL Tutorial 칼럼을 방문하세요!

위 내용은 MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL에 저장된 절차는 무엇입니까?MySQL에 저장된 절차는 무엇입니까?May 01, 2025 am 12:27 AM

저장된 절차는 성능을 향상시키고 복잡한 작업을 단순화하기 위해 MySQL에서 사전 컴파일 된 SQL 문입니다. 1. 성능 향상 : 첫 번째 편집 후 후속 통화를 다시 컴파일 할 필요가 없습니다. 2. 보안 향상 : 권한 제어를 통해 데이터 테이블 액세스를 제한합니다. 3. 복잡한 작업 단순화 : 여러 SQL 문을 결합하여 응용 프로그램 계층 로직을 단순화합니다.

쿼리 캐싱은 MySQL에서 어떻게 작동합니까?쿼리 캐싱은 MySQL에서 어떻게 작동합니까?May 01, 2025 am 12:26 AM

MySQL 쿼리 캐시의 작동 원리는 선택 쿼리 결과를 저장하는 것이며 동일한 쿼리가 다시 실행되면 캐시 된 결과가 직접 반환됩니다. 1) 쿼리 캐시는 데이터베이스 읽기 성능을 향상시키고 해시 값을 통해 캐시 된 결과를 찾습니다. 2) MySQL 구성 파일에서 간단한 구성, query_cache_type 및 query_cache_size를 설정합니다. 3) SQL_NO_CACHE 키워드를 사용하여 특정 쿼리의 캐시를 비활성화하십시오. 4) 고주파 업데이트 환경에서 쿼리 캐시는 성능 병목 현상을 유발할 수 있으며 매개 변수의 모니터링 및 조정을 통해 사용하기 위해 최적화해야합니다.

다른 관계형 데이터베이스를 통해 MySQL을 사용하면 어떤 장점이 있습니까?다른 관계형 데이터베이스를 통해 MySQL을 사용하면 어떤 장점이 있습니까?May 01, 2025 am 12:18 AM

MySQL이 다양한 프로젝트에서 널리 사용되는 이유에는 다음이 포함됩니다. 1. 고성능 및 확장 성, 여러 스토리지 엔진을 지원합니다. 2. 사용 및 유지 관리, 간단한 구성 및 풍부한 도구; 3. 많은 지역 사회 및 타사 도구 지원을 유치하는 풍부한 생태계; 4. 여러 운영 체제에 적합한 크로스 플랫폼 지원.

MySQL에서 데이터베이스 업그레이드를 어떻게 처리합니까?MySQL에서 데이터베이스 업그레이드를 어떻게 처리합니까?Apr 30, 2025 am 12:28 AM

MySQL 데이터베이스를 업그레이드하는 단계에는 다음이 포함됩니다. 1. 데이터베이스 백업, 2. 현재 MySQL 서비스 중지, 3. 새 버전의 MySQL 설치, 4. 새 버전의 MySQL 서비스 시작, 5. 데이터베이스 복구. 업그레이드 프로세스 중에 호환성 문제가 필요하며 Perconatoolkit과 같은 고급 도구를 테스트 및 최적화에 사용할 수 있습니다.

MySQL에 사용할 수있는 다른 백업 전략은 무엇입니까?MySQL에 사용할 수있는 다른 백업 전략은 무엇입니까?Apr 30, 2025 am 12:28 AM

MySQL 백업 정책에는 논리 백업, 물리적 백업, 증분 백업, 복제 기반 백업 및 클라우드 백업이 포함됩니다. 1. 논리 백업은 MySQLDump를 사용하여 데이터베이스 구조 및 데이터를 내보내며 소규모 데이터베이스 및 버전 마이그레이션에 적합합니다. 2. 물리적 백업은 데이터 파일을 복사하여 빠르고 포괄적이지만 데이터베이스 일관성이 필요합니다. 3. 증분 백업은 이진 로깅을 사용하여 변경 사항을 기록합니다. 이는 큰 데이터베이스에 적합합니다. 4. 복제 기반 백업은 서버에서 백업하여 생산 시스템에 미치는 영향을 줄입니다. 5. AmazonRDS와 같은 클라우드 백업은 자동화 솔루션을 제공하지만 비용과 제어를 고려해야합니다. 정책을 선택할 때 데이터베이스 크기, 가동 중지 시간 허용 오차, 복구 시간 및 복구 지점 목표를 고려해야합니다.

MySQL 클러스터링이란 무엇입니까?MySQL 클러스터링이란 무엇입니까?Apr 30, 2025 am 12:28 AM

mysqlclusteringenhancesdatabaserobustness andscalabilitydaturedingdataacrossmultiplenodes.itusesthendbenginefordatareplicationandfaulttolerance, highavailability를 보장합니다

MySQL의 성능을 위해 데이터베이스 스키마 설계를 어떻게 최적화합니까?MySQL의 성능을 위해 데이터베이스 스키마 설계를 어떻게 최적화합니까?Apr 30, 2025 am 12:27 AM

MySQL에서 데이터베이스 스키마 설계 최적화는 다음 단계를 통해 성능을 향상시킬 수 있습니다. 1. 인덱스 최적화 : 공통 쿼리 열에서 인덱스 생성, 쿼리의 오버 헤드 균형 및 업데이트 삽입. 2. 표 구조 최적화 : 정규화 또는 정상화를 통한 데이터 중복성을 줄이고 액세스 효율을 향상시킵니다. 3. 데이터 유형 선택 : 스토리지 공간을 줄이기 위해 Varchar 대신 Int와 같은 적절한 데이터 유형을 사용하십시오. 4. 분할 및 하위 테이블 : 대량 데이터 볼륨의 경우 파티션 및 하위 테이블을 사용하여 데이터를 분산시켜 쿼리 및 유지 보수 효율성을 향상시킵니다.

MySQL 성능을 어떻게 최적화 할 수 있습니까?MySQL 성능을 어떻게 최적화 할 수 있습니까?Apr 30, 2025 am 12:26 AM

tooptimizemysqlperformance, followthesesteps : 1) 구현 properIndexingToSpeedUpqueries, 2) useExplaintoAnalyzeanDoptimizeQueryPerformance, 3) AdvertServerConfigUrationSettingstingslikeInnodb_buffer_pool_sizeandmax_connections, 4) uspartOflEtOflEtOflestoI

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.