최근에 mysql 플래시백 작성을 마쳤는데 갑자기 다음과 같은 사용 시나리오가 있다는 것을 발견했습니다. 어떤 경우에는 특정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수 있습니까? 얼마나 많은 거래가 발생했나요? 주로 어떤 양식이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다. 그래서 나도 정리했다.
어젯밤에 작성한 스크립트입니다. 제 python 능력이 부족해서 원래는 이 글을 올리지 않을 생각이었는데, 생각해보니 정원 친구들이 최적화 제안을 해줄 수도 있겠네요.
1 구현 내용
경우에 따라 일정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수도 있나요? 얼마나 많은 거래가 발생했나요? 주로 어떤 테이블이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다.
이러한 상황 중 일부는 모니터링을 통해 대략적으로 이해할 수 있지만 binlog를 기반으로 완전히 분석할 수도 있습니다. binlog의 형식은 행 모드입니다.
제가 플래시백을 쓸 때, 그런데 이 단계도 Python으로 작성했습니다. 원리는 동일하지만, 제 Python이 부족해서 여유가 많을 수도 있습니다. 성능 향상을 위해 Garden 친구들이 이를 최적화하는 데 도움을 주기를 바랍니다.
먼저 Python 스크립트의 분석 결과는 트랜잭션 시간 소비, 트랜잭션에 영향을 받는 행 수, DML 행 수, 가장 자주 작동하는 테이블의 테이블 상태 등 4가지 부분으로 나누어 다음과 같이 게시됩니다.
2 스크립트에 대한 간략한 설명
스크립트가 의존하는 모듈 중 pymysql은 직접 설치해야 합니다.
5개의함수가 정의된 queryanalyse 클래스를 만듭니다: _get_db, create_tab, rowrecord, binlogdesc 및 closeconn.
2.1 _get_db
이 함수는 입력 매개변수 값을 구문 분석하는 데 사용됩니다. 매개변수 값은 총 7개이며 모두 입력해야 합니다. 호스트, 사용자, 비밀번호, 포트, 테이블 이름for transaction, 해당 약어는 다음과 같습니다.
file 경로, binlog 파일
-tr : 레코드용 테이블 이름, 행 레코드를 저장할 테이블 이름-tt : 트랜잭션용 테이블 이름, 트랜잭션을 저장할 테이블 이름 예를 들어 다음 스크립트를 실행합니다. python queryanalyse.py - h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow, 이 함수는 각 옵션의 매개변수 값을 저장합니다.2.2 create_tab
binlog 파일의 분석 결과를 저장하기 위해 두 개의 테이블을 생성합니다. 하나는 트랜잭션의 실행 시작 시간과 종료 시간을 저장하는 데 사용되고, 다른 하나는 -tt 옵션으로 테이블 이름을 지정하고, 다른 하나는 레코드의 각 행에 대한 수정 사항을 저장하는 데 사용되며, 테이블 이름은 옵션 -tr. 거래 테이블 기록 내용: 거래 시작 시간 및 거래 종료 시간. 행 레코드 테이블의 내용: 라이브러리 이름, 테이블 이름, DML 유형 및 트랜잭션에 해당하는 트랜잭션 테이블 번호.root@localhost:mysql3310.sock 14:42:29 [flashback]>show create table tbrow \G*************************** 1. row *************************** Table: tbrowCreate Table: CREATE TABLE `tbrow` ( `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', `tran_num` int(11) NOT NULL COMMENT 'the transaction number', `dbname` varchar(50) NOT NULL, `tbname` varchar(50) NOT NULL, PRIMARY KEY (`auto_id`), KEY `sqltype` (`sqltype`), KEY `dbname` (`dbname`), KEY `tbname` (`tbname`) ) ENGINE=InnoDB AUTO_INCREMENT=295151 DEFAULT CHARSET=utf81 row in set (0.00 sec) root@localhost:mysql3310.sock 14:42:31 [flashback]>SHOW CREATE TABLE TBTRAN \G*************************** 1. row *************************** Table: TBTRANCreate Table: CREATE TABLE `tbtran` ( `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `begin_time` datetime NOT NULL, `end_time` datetime NOT NULL, PRIMARY KEY (`auto_id`) ) ENGINE=InnoDB AUTO_INCREMENT=6390 DEFAULT CHARSET=utf81 row in set (0.00 sec)
2.3 rowrecord
주요 기능, binlog 파일의 내용을 분석합니다. 다음은 몇 가지 규칙입니다.每个事务的结束点,是以 'Xid = ' 来查找
事务的开始时间,是事务内的第一个 'Table_map' 行里边的时间
事务的结束时间,是以 'Xid = '所在行的 里边的时间
每个行数据是属于哪个表格,是以 'Table_map'来查找
DML的类型是按照 行记录开头的情况是否为:'### INSERT INTO' 、'### UPDATE' 、'### DELETE FROM'
注意,单个事务可以包含多个表格多种DML多行数据修改的情况。
2.4 binlogdesc
描述分析结果,简单4个SQL分析。
分析修改行数据的 事务耗时情况
分析修改行数据的 事务影响行数情况
分析DML分布情况
分析 最多DML操作的表格 ,取前十个分析
2.5 closeconn
关闭数据库连接。
3 使用说明
首先,确保python安装了pymysql模块,把python脚本拷贝到文件 queryanalyse.py。
然后,把要分析的binlog文件先用 mysqlbinlog 指令分析存储,具体binlog的文件说明,可以查看之前的博文:关于binary log那些事——认真码了好长一篇。mysqlbinlog的指令使用方法,可以详细查看文档:https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html 。
比较常用通过指定开始时间跟结束时间来分析 binlog文件。
mysqlbinlog --start-datetime='2017-04-23 00:00:03' --stop-datetime='2017-04-23 00:30:00' --base64-output=decode-rows -v /data/mysql/logs/mysql-bin.007335 > /tmp/binlog_test.log
分析后,可以把这个 binlog_test.log文件拷贝到其他空闲服务器执行分析,只需要有个空闲的DB来存储分析记录即可。
假设这个时候,拷贝 binlog_test.log到测试服务器上,测试服务器上的数据库可以用来存储分析内容,则可以执行python脚本了,注意要进入到python脚本的目录中,或者指定python脚本路径。
python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f= /tmp/binlog_test.log -tt=flashback.tbtran -tr=flashback.tbrow
没了,就等待输出吧。
性能是硬伤,在虚拟机上测试,大概500M的binlog文件需要分析2-3min,有待提高!
4 python脚本
1 import pymysql 2 from pymysql.cursors import DictCursor 3 import re 4 import os 5 import sys 6 import datetime 7 import time 8 import logging 9 import importlib 10 importlib.reload(logging) 11 logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ') 12 13 14 usage=''' usage: python [script's path] [option] 15 ALL options need to assign: 16 17 -h : host, the database host,which database will store the results after analysis 18 -u : user, the db user 19 -p : password, the db user's password 20 -P : port, the db port 21 -f : file path, the binlog file 22 -tr : table name for record , the table name to store the row record 23 -tt : table name for transaction, the table name to store transactions 24 Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow 25 26 ''' 27 28 class queryanalyse: 29 def init(self): 30 #初始化 31 self.host='' 32 self.user='' 33 self.password='' 34 self.port='3306' 35 self.fpath='' 36 self.tbrow='' 37 self.tbtran='' 38 39 self._get_db() 40 logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran)) 41 42 self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8') 43 self.cur = self.mysqlconn.cursor(cursor=DictCursor) 44 logging.info('MySQL which userd to store binlog event connection is ok') 45 46 self.begin_time='' 47 self.end_time='' 48 self.db_name='' 49 self.tb_name='' 50 51 def _get_db(self): 52 #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式, 53 #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理 54 logging.info('begin to assign values to parameters') 55 if len(sys.argv) == 1: 56 print(usage) 57 sys.exit(1) 58 elif sys.argv[1] == '--help': 59 print(usage) 60 sys.exit() 61 elif len(sys.argv) > 2: 62 for i in sys.argv[1:]: 63 _argv = i.split('=') 64 if _argv[0] == '-h': 65 self.host = _argv[1] 66 elif _argv[0] == '-u': 67 self.user = _argv[1] 68 elif _argv[0] == '-P': 69 self.port = int(_argv[1]) 70 elif _argv[0] == '-f': 71 self.fpath = _argv[1] 72 elif _argv[0] == '-tr': 73 self.tbrow = _argv[1] 74 elif _argv[0] == '-tt': 75 self.tbtran = _argv[1] 76 elif _argv[0] == '-p': 77 self.password = _argv[1] 78 else: 79 print(usage) 80 81 def create_tab(self): 82 #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况 83 #注意,一个事务可以存储多行数据修改的情况 84 logging.info('creating table ...') 85 create_tb_sql ='''CREATE TABLE IF NOT EXISTS {} ( 86 `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 87 `begin_time` datetime NOT NULL, 88 `end_time` datetime NOT NULL, 89 PRIMARY KEY (`auto_id`) 90 ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 91 CREATE TABLE IF NOT EXISTS {} ( 92 `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 93 `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', 94 `tran_num` int(11) NOT NULL COMMENT 'the transaction number', 95 `dbname` varchar(50) NOT NULL, 96 `tbname` varchar(50) NOT NULL, 97 PRIMARY KEY (`auto_id`), 98 KEY `sqltype` (`sqltype`), 99 KEY `dbname` (`dbname`),100 KEY `tbname` (`tbname`)101 ) ENGINE=InnoDB DEFAULT CHARSET=utf8;102 truncate table {};103 truncate table {};104 '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)105 106 self.cur.execute(create_tb_sql)107 logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))108 109 def rowrecord(self):110 #处理每一行binlog111 #事务的结束采用 'Xid =' 来划分112 #分析结果,按照一个事务为单位存储提交一次到db113 try:114 tran_num=1 #事务数115 record_sql='' #行记录的insert sql116 tran_sql='' #事务的insert sql117 118 self.create_tab()119 120 with open(self.fpath,'r') as binlog_file:121 logging.info('begining to analyze the binlog file ,this may be take a long time !!!')122 logging.info('analyzing...')123 124 for bline in binlog_file:125 126 if bline.find('Table_map:') != -1:127 l = bline.index('server')128 n = bline.index('Table_map')129 begin_time = bline[:l:].rstrip(' ').replace('#', '20')130 131 if record_sql=='':132 self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]133 134 self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]135 self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]136 bline=''137 138 elif bline.startswith('### INSERT INTO'):139 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)140 141 elif bline.startswith('### UPDATE'):142 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)143 144 elif bline.startswith('### DELETE FROM'):145 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)146 147 elif bline.find('Xid =') != -1:148 149 l = bline.index('server')150 end_time = bline[:l:].rstrip(' ').replace('#', '20')151 self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]152 tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)153 154 self.cur.execute(tran_sql)155 self.mysqlconn.commit()156 record_sql = ''157 tran_num += 1158 159 except Exception:160 return 'funtion rowrecord error'161 162 def binlogdesc(self):163 sql=''164 t_num=0165 r_num=0166 logging.info('Analysed result printing...\n')167 #分析总的事务数跟行修改数量168 sql="select 'tbtran' name,count(*) nums from {} union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)169 self.cur.execute(sql)170 rows=self.cur.fetchall()171 for row in rows:172 if row['name']=='tbtran':173 t_num = row['nums']174 else:175 r_num = row['nums']176 print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))177 178 # 计算 最耗时 的单个事务179 # 分析每个事务的耗时情况,分为5个时间段来描述180 # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second181 sql='''select 182 count(case when cost_sec between 0 and 1 then 1 end ) cos_1,183 count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,184 count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,185 count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,186 count(case when cost_sec >30.1 then 1 end ) cos_more,187 max(cost_sec) cos_max188 from 189 (190 select 191 auto_id,timestampdiff(second,begin_time,end_time) cost_sec192 from {}193 ) a;'''.format(self.tbtran)194 self.cur.execute(sql)195 rows=self.cur.fetchall()196 197 for row in rows:198 print('The most cost time : {} '.format(row['cos_max']))199 print('The distribution map of each transaction costed time: ')200 print('Cost time between 0 and 1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))201 print('Cost time between 1.1 and 5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))202 print('Cost time between 5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))203 print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))204 print('Cost time > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))205 206 # 计算 单个事务影响行数最多 的行数量207 # 分析每个事务 影响行数 情况,分为5个梯度来描述208 sql='''select 209 count(case when nums between 0 and 10 then 1 end ) row_1,210 count(case when nums between 11 and 100 then 1 end ) row_2,211 count(case when nums between 101 and 1000 then 1 end ) row_3,212 count(case when nums between 1001 and 10000 then 1 end ) row_4,213 count(case when nums >10001 then 1 end ) row_5,214 max(nums) row_max215 from 216 (217 select 218 count(*) nums219 from {} group by tran_num220 ) a;'''.format(self.tbrow)221 self.cur.execute(sql)222 rows=self.cur.fetchall()223 224 for row in rows:225 print('The most changed rows for each row: {} '.format(row['row_max']))226 print('The distribution map of each transaction changed rows : ')227 print('Changed rows between 1 and 10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))228 print('Changed rows between 11 and 100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))229 print('Changed rows between 101 and 1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))230 print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))231 print('Changed rows > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))232 233 # 分析 各个行数 DML的类型情况234 # 描述 delete,insert,update的分布情况235 sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)236 self.cur.execute(sql)237 rows=self.cur.fetchall()238 239 print('The distribution map of the {} changed rows : '.format(r_num))240 for row in rows:241 242 if row['sqltype']==1:243 print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))244 if row['sqltype']==2:245 print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))246 if row['sqltype']==3:247 print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))248 249 # 描述 影响行数 最多的表格250 # 可以分析是哪些表格频繁操作,这里显示前10个table name251 sql = '''select 252 dbname,tbname ,253 count(*) ALL_rows,254 count(*)*100/{} per,255 count(case when sqltype=1 then 1 end) INSERT_rows,256 count(case when sqltype=2 then 1 end) UPDATE_rows,257 count(case when sqltype=3 then 1 end) DELETE_rows258 from {} 259 group by dbname,tbname 260 order by ALL_rows desc 261 limit 10;'''.format(r_num,self.tbrow)262 self.cur.execute(sql)263 rows = self.cur.fetchall()264 265 print('The distribution map of the {} changed rows : '.format(r_num))266 print('tablename'.ljust(50),267 '|','changed_rows'.center(15),268 '|','percent'.center(10),269 '|','insert_rows'.center(18),270 '|','update_rows'.center(18),271 '|','delete_rows'.center(18)272 )273 print('-------------------------------------------------------------------------------------------------------------------------------------------------')274 for row in rows:275 print((row['dbname']+'.'+row['tbname']).ljust(50),276 '|',str(row['ALL_rows']).rjust(15),277 '|',(str(int(row['per']))+'%').rjust(10),278 '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),279 '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),280 '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),281 )282 print('\n')283 284 logging.info('Finished to analyse the binlog file !!!')285 286 def closeconn(self):287 self.cur.close()288 logging.info('release db connections\n')289 290 def main():291 p = queryanalyse()292 p.rowrecord()293 p.binlogdesc()294 p.closeconn()295 296 if name == "main":297 main()
위 내용은 binlog를 기반으로 mysql 행 레코드 수정 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

MySQL은 GPL 라이센스를 사용합니다. 1) GPL 라이센스는 MySQL의 무료 사용, 수정 및 분포를 허용하지만 수정 된 분포는 GPL을 준수해야합니다. 2) 상업용 라이센스는 공개 수정을 피할 수 있으며 기밀이 필요한 상업용 응용 프로그램에 적합합니다.

MyISAM 대신 InnoDB를 선택할 때의 상황에는 다음이 포함됩니다. 1) 거래 지원, 2) 높은 동시성 환경, 3) 높은 데이터 일관성; 반대로, MyISAM을 선택할 때의 상황에는 다음이 포함됩니다. 1) 주로 읽기 작업, 2) 거래 지원이 필요하지 않습니다. InnoDB는 전자 상거래 플랫폼과 같은 높은 데이터 일관성 및 트랜잭션 처리가 필요한 응용 프로그램에 적합하지만 MyISAM은 블로그 시스템과 같은 읽기 집약적 및 트랜잭션이없는 애플리케이션에 적합합니다.

MySQL에서 외국 키의 기능은 테이블 간의 관계를 설정하고 데이터의 일관성과 무결성을 보장하는 것입니다. 외국 키는 참조 무결성 검사 및 계단식 작업을 통해 데이터의 효과를 유지합니다. 성능 최적화에주의를 기울이고 사용할 때 일반적인 오류를 피하십시오.

MySQL에는 B-Tree Index, Hash Index, Full-Text Index 및 공간 인덱스의 네 가지 주요 인덱스 유형이 있습니다. 1.B- 트리 색인은 범위 쿼리, 정렬 및 그룹화에 적합하며 직원 테이블의 이름 열에서 생성에 적합합니다. 2. HASH 인덱스는 동등한 쿼리에 적합하며 메모리 저장 엔진의 HASH_Table 테이블의 ID 열에서 생성에 적합합니다. 3. 전체 텍스트 색인은 기사 테이블의 내용 열에서 생성에 적합한 텍스트 검색에 사용됩니다. 4. 공간 지수는 지리 공간 쿼리에 사용되며 위치 테이블의 Geom 열에서 생성에 적합합니다.

toreateanindexinmysql, usethecreateindexstatement.1) forasinglecolumn, "createindexidx_lastnameonemployees (lastname);"2) foracompositeIndex를 사용하고 "createDexIdx_nameonemployees (forstName, FirstName);"3)을 사용하십시오

MySQL과 Sqlite의 주요 차이점은 설계 개념 및 사용 시나리오입니다. 1. MySQL은 대규모 응용 프로그램 및 엔터프라이즈 수준의 솔루션에 적합하며 고성능 및 동시성을 지원합니다. 2. SQLITE는 모바일 애플리케이션 및 데스크탑 소프트웨어에 적합하며 가볍고 내부질이 쉽습니다.

MySQL의 인덱스는 데이터 검색 속도를 높이는 데 사용되는 데이터베이스 테이블에서 하나 이상의 열의 주문 구조입니다. 1) 인덱스는 스캔 한 데이터의 양을 줄임으로써 쿼리 속도를 향상시킵니다. 2) B-Tree Index는 균형 잡힌 트리 구조를 사용하여 범위 쿼리 및 정렬에 적합합니다. 3) CreateIndex 문을 사용하여 CreateIndexIdx_customer_idonorders (customer_id)와 같은 인덱스를 작성하십시오. 4) Composite Indexes는 CreateIndexIdx_customer_orderOders (Customer_id, Order_Date)와 같은 다중 열 쿼리를 최적화 할 수 있습니다. 5) 설명을 사용하여 쿼리 계획을 분석하고 피하십시오

MySQL에서 트랜잭션을 사용하면 데이터 일관성이 보장됩니다. 1) STARTTRANSACTION을 통해 트랜잭션을 시작한 다음 SQL 작업을 실행하고 커밋 또는 롤백으로 제출하십시오. 2) SavePoint를 사용하여 부분 롤백을 허용하는 저장 지점을 설정하십시오. 3) 성능 최적화 제안에는 트랜잭션 시간 단축, 대규모 쿼리 방지 및 격리 수준을 합리적으로 사용하는 것이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
