찾다
데이터 베이스MySQL 튜토리얼binlog를 기반으로 mysql 행 레코드 수정 분석

최근에 mysql 플래시백 작성을 마쳤는데 갑자기 다음과 같은 사용 시나리오가 있다는 것을 발견했습니다. 어떤 경우에는 특정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수 있습니까? 얼마나 많은 거래가 발생했나요? 주로 어떤 양식이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다. 그래서 나도 정리했다.

어젯밤에 작성한 스크립트입니다. 제 python 능력이 부족해서 원래는 이 글을 올리지 않을 생각이었는데, 생각해보니 정원 친구들이 최적화 제안을 해줄 수도 있겠네요.

1 구현 내용

경우에 따라 일정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수도 있나요? 얼마나 많은 거래가 발생했나요? 주로 어떤 테이블이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다.

이러한 상황 중 일부는 모니터링을 통해 대략적으로 이해할 수 있지만 binlog를 기반으로 완전히 분석할 수도 있습니다. binlog의 형식은 행 모드입니다.

제가 플래시백을 쓸 때, 그런데 이 단계도 Python으로 작성했습니다. 원리는 동일하지만, 제 Python이 부족해서 여유가 많을 수도 있습니다. 성능 향상을 위해 Garden 친구들이 이를 최적화하는 데 도움을 주기를 바랍니다.

먼저 Python 스크립트의 분석 결과는 트랜잭션 시간 소비, 트랜잭션에 영향을 받는 행 수, DML 행 수, 가장 자주 작동하는 테이블의 테이블 상태 등 4가지 부분으로 나누어 다음과 같이 게시됩니다.

2 스크립트에 대한 간략한 설명

스크립트가 의존하는 모듈 중 pymysql은 직접 설치해야 합니다.

5개의

함수가 정의된 queryanalyse 클래스를 만듭니다: _get_db, create_tab, rowrecord, binlogdesc 및 closeconn.

2.1 _get_db

이 함수는 입력 매개변수 값을 구문 분석하는 데 사용됩니다. 매개변수 값은 총 7개이며 모두 입력해야 합니다. 호스트, 사용자, 비밀번호, 포트, 테이블 이름

for transaction, 해당 약어는 다음과 같습니다.


ALL 옵션에는

-h : 호스트, 분석 후 결과를 저장할 데이터베이스 호스트

-u : 사용자, db 사용자

-p : 비밀번호, db 사용자의 비밀번호

-P : 포트, db 포트

-f :

file 경로, binlog 파일

-tr : 레코드용 테이블 이름, 행 레코드를 저장할 테이블 이름

-tt : 트랜잭션용 테이블 이름, 트랜잭션을 저장할 테이블 이름

예를 들어 다음 스크립트를 실행합니다. python queryanalyse.py - h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow, 이 함수는 각 옵션의 매개변수 값을 저장합니다.

2.2 create_tab

binlog 파일의 분석 결과를 저장하기 위해 두 개의 테이블을 생성합니다. 하나는 트랜잭션의 실행 시작 시간과 종료 시간을 저장하는 데 사용되고, 다른 하나는 -tt 옵션으로 테이블 이름을 지정하고, 다른 하나는 레코드의 각 행에 대한 수정 사항을 저장하는 데 사용되며, 테이블 이름은 옵션 -tr.

거래 테이블 기록 내용: 거래 시작 시간 및 거래 종료 시간.

행 레코드 테이블의 내용: 라이브러리 이름, 테이블 이름, DML 유형 및 트랜잭션에 해당하는 트랜잭션 테이블 번호.

root@localhost:mysql3310.sock  14:42:29 [flashback]>show create table tbrow \G*************************** 1. row ***************************
       Table: tbrowCreate Table: CREATE TABLE `tbrow` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
  `tran_num` int(11) NOT NULL COMMENT 'the transaction number',
  `dbname` varchar(50) NOT NULL,
  `tbname` varchar(50) NOT NULL,  PRIMARY KEY (`auto_id`),  KEY `sqltype` (`sqltype`),  KEY `dbname` (`dbname`),  KEY `tbname` (`tbname`)
) ENGINE=InnoDB AUTO_INCREMENT=295151 DEFAULT CHARSET=utf81 row in set (0.00 sec)
 
root@localhost:mysql3310.sock  14:42:31 [flashback]>SHOW CREATE TABLE TBTRAN \G*************************** 1. row ***************************
       Table: TBTRANCreate Table: CREATE TABLE `tbtran` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `begin_time` datetime NOT NULL,
  `end_time` datetime NOT NULL,  PRIMARY KEY (`auto_id`)
) ENGINE=InnoDB AUTO_INCREMENT=6390 DEFAULT CHARSET=utf81 row in set (0.00 sec)

2.3 rowrecord

주요 기능, binlog 파일의 내용을 분석합니다. 다음은 몇 가지 규칙입니다.

  1. 每个事务的结束点,是以 'Xid = ' 来查找

    1. 事务的开始时间,是事务内的第一个 'Table_map' 行里边的时间

    2. 事务的结束时间,是以 'Xid = '所在行的 里边的时间

  2. 每个行数据是属于哪个表格,是以 'Table_map'来查找

  3. DML的类型是按照 行记录开头的情况是否为:'### INSERT INTO'  、'### UPDATE' 、'### DELETE FROM' 

  4. 注意,单个事务可以包含多个表格多种DML多行数据修改的情况。

2.4 binlogdesc

    描述分析结果,简单4个SQL分析。

  1. 分析修改行数据的 事务耗时情况

  2. 分析修改行数据的 事务影响行数情况

  3. 分析DML分布情况

  4. 分析 最多DML操作的表格 ,取前十个分析

2.5 closeconn

    关闭数据库连接。

3 使用说明

    首先,确保python安装了pymysql模块,把python脚本拷贝到文件 queryanalyse.py。

    然后,把要分析的binlog文件先用 mysqlbinlog 指令分析存储,具体binlog的文件说明,可以查看之前的博文:关于binary log那些事——认真码了好长一篇。mysqlbinlog的指令使用方法,可以详细查看文档:https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html 。

    比较常用通过指定开始时间跟结束时间来分析 binlog文件。


mysqlbinlog --start-datetime='2017-04-23 00:00:03' --stop-datetime='2017-04-23 00:30:00' --base64-output=decode-rows -v /data/mysql/logs/mysql-bin.007335 > /tmp/binlog_test.log   

    分析后,可以把这个 binlog_test.log文件拷贝到其他空闲服务器执行分析,只需要有个空闲的DB来存储分析记录即可。

    假设这个时候,拷贝 binlog_test.log到测试服务器上,测试服务器上的数据库可以用来存储分析内容,则可以执行python脚本了,注意要进入到python脚本的目录中,或者指定python脚本路径。


python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f= /tmp/binlog_test.log -tt=flashback.tbtran -tr=flashback.tbrow

    没了,就等待输出吧。

    性能是硬伤,在虚拟机上测试,大概500M的binlog文件需要分析2-3min,有待提高!

4 python脚本

  1 import pymysql  2 from pymysql.cursors import DictCursor  3 import re  4 import os  5 import sys  6 import datetime  7 import time  8 import logging  9 import importlib 10 importlib.reload(logging) 11 logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ') 12  13  14 usage=''' usage: python [script's path] [option] 15 ALL options need to assign: 16  17 -h     : host, the database host,which database will store the results after analysis 
 18 -u     : user, the db user 19 -p     : password, the db user's password 20 -P     : port, the db port 21 -f     : file path, the binlog file 22 -tr    : table name for record , the table name to store the row record 23 -tt    : table name for transaction, the table name to store transactions 24 Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow 25  26 ''' 27  28 class queryanalyse: 29     def init(self): 30         #初始化 31         self.host='' 32         self.user='' 33         self.password='' 34         self.port='3306' 35         self.fpath='' 36         self.tbrow='' 37         self.tbtran='' 38  39         self._get_db() 40         logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran)) 41  42         self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8') 43         self.cur = self.mysqlconn.cursor(cursor=DictCursor) 44         logging.info('MySQL which userd to store binlog event connection is ok') 45  46         self.begin_time='' 47         self.end_time='' 48         self.db_name='' 49         self.tb_name='' 50  51     def _get_db(self): 52         #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式, 53         #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理 54         logging.info('begin to assign values to parameters') 55         if len(sys.argv) == 1: 56             print(usage) 57             sys.exit(1) 58         elif sys.argv[1] == '--help': 59             print(usage) 60             sys.exit() 61         elif len(sys.argv) > 2: 62             for i in sys.argv[1:]: 63                 _argv = i.split('=') 64                 if _argv[0] == '-h': 65                     self.host = _argv[1] 66                 elif _argv[0] == '-u': 67                     self.user = _argv[1] 68                 elif _argv[0] == '-P': 69                     self.port = int(_argv[1]) 70                 elif _argv[0] == '-f': 71                     self.fpath = _argv[1] 72                 elif _argv[0] == '-tr': 73                     self.tbrow = _argv[1] 74                 elif _argv[0] == '-tt': 75                     self.tbtran = _argv[1] 76                 elif _argv[0] == '-p': 77                     self.password = _argv[1] 78                 else: 79                     print(usage) 80  81     def create_tab(self): 82         #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况 83         #注意,一个事务可以存储多行数据修改的情况 84         logging.info('creating table ...') 85         create_tb_sql ='''CREATE TABLE IF NOT EXISTS  {} ( 86                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 87                           `begin_time` datetime NOT NULL, 88                           `end_time` datetime NOT NULL, 89                           PRIMARY KEY (`auto_id`) 90                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 91                         CREATE TABLE IF NOT EXISTS  {} ( 92                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 93                           `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', 94                           `tran_num` int(11) NOT NULL COMMENT 'the transaction number', 95                           `dbname` varchar(50) NOT NULL, 96                           `tbname` varchar(50) NOT NULL, 97                           PRIMARY KEY (`auto_id`), 98                           KEY `sqltype` (`sqltype`), 99                           KEY `dbname` (`dbname`),100                           KEY `tbname` (`tbname`)101                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8;102                         truncate table {};103                         truncate table {};104                         '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)105 106         self.cur.execute(create_tb_sql)107         logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))108 109     def rowrecord(self):110         #处理每一行binlog111         #事务的结束采用 'Xid =' 来划分112         #分析结果,按照一个事务为单位存储提交一次到db113         try:114             tran_num=1    #事务数115             record_sql='' #行记录的insert sql116             tran_sql=''   #事务的insert sql117 118             self.create_tab()119 120             with open(self.fpath,'r') as binlog_file:121                 logging.info('begining to analyze the binlog file ,this may be take a long time !!!')122                 logging.info('analyzing...')123 124                 for bline in binlog_file:125 126                     if bline.find('Table_map:') != -1:127                         l = bline.index('server')128                         n = bline.index('Table_map')129                         begin_time = bline[:l:].rstrip(' ').replace('#', '20')130 131                         if record_sql=='':132                             self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]133 134                         self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]135                         self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]136                         bline=''137 138                     elif bline.startswith('### INSERT INTO'):139                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)140 141                     elif bline.startswith('### UPDATE'):142                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)143 144                     elif bline.startswith('### DELETE FROM'):145                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)146 147                     elif bline.find('Xid =') != -1:148 149                         l = bline.index('server')150                         end_time = bline[:l:].rstrip(' ').replace('#', '20')151                         self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]152                         tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)153 154                         self.cur.execute(tran_sql)155                         self.mysqlconn.commit()156                         record_sql = ''157                         tran_num += 1158 159         except Exception:160             return 'funtion rowrecord error'161 162     def binlogdesc(self):163         sql=''164         t_num=0165         r_num=0166         logging.info('Analysed result printing...\n')167         #分析总的事务数跟行修改数量168         sql="select 'tbtran' name,count(*) nums from {}  union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)169         self.cur.execute(sql)170         rows=self.cur.fetchall()171         for row in rows:172             if row['name']=='tbtran':173                 t_num = row['nums']174             else:175                 r_num = row['nums']176         print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))177 178         # 计算 最耗时 的单个事务179         # 分析每个事务的耗时情况,分为5个时间段来描述180         # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second181         sql='''select 
182                       count(case when cost_sec between 0 and 1 then 1 end ) cos_1,183                       count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,184                       count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,185                       count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,186                       count(case when cost_sec >30.1 then 1 end ) cos_more,187                       max(cost_sec) cos_max188                 from 
189                 (190                         select 
191                             auto_id,timestampdiff(second,begin_time,end_time) cost_sec192                         from {}193                 ) a;'''.format(self.tbtran)194         self.cur.execute(sql)195         rows=self.cur.fetchall()196 197         for row in rows:198             print('The most cost time : {} '.format(row['cos_max']))199             print('The distribution map of each transaction costed time: ')200             print('Cost time between    0 and  1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))201             print('Cost time between  1.1 and  5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))202             print('Cost time between  5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))203             print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))204             print('Cost time                     > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))205 206         # 计算 单个事务影响行数最多 的行数量207         # 分析每个事务 影响行数 情况,分为5个梯度来描述208         sql='''select 
209                     count(case when nums between 0 and 10 then 1 end ) row_1,210                     count(case when nums between 11 and 100 then 1 end ) row_2,211                     count(case when nums between 101 and 1000 then 1 end ) row_3,212                     count(case when nums between 1001 and 10000 then 1 end ) row_4,213                     count(case when nums >10001 then 1 end ) row_5,214                     max(nums) row_max215                from 
216                   (217                     select 
218                              count(*) nums219                     from {} group by tran_num220                    ) a;'''.format(self.tbrow)221         self.cur.execute(sql)222         rows=self.cur.fetchall()223 224         for row in rows:225             print('The most changed rows for each row: {} '.format(row['row_max']))226             print('The distribution map of each transaction changed rows : ')227             print('Changed rows between    1 and    10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))228             print('Changed rows between   11 and   100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))229             print('Changed rows between  101 and  1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))230             print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))231             print('Changed rows                       > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))232 233         # 分析 各个行数 DML的类型情况234         # 描述 delete,insert,update的分布情况235         sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)236         self.cur.execute(sql)237         rows=self.cur.fetchall()238 239         print('The distribution map of the {} changed rows : '.format(r_num))240         for row in rows:241 242             if row['sqltype']==1:243                 print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))244             if row['sqltype']==2:245                 print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))246             if row['sqltype']==3:247                 print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))248 249         # 描述 影响行数 最多的表格250         # 可以分析是哪些表格频繁操作,这里显示前10个table name251         sql = '''select 
252                       dbname,tbname ,253                       count(*) ALL_rows,254                       count(*)*100/{} per,255                       count(case when sqltype=1 then 1 end) INSERT_rows,256                       count(case when sqltype=2 then 1 end) UPDATE_rows,257                       count(case when sqltype=3 then 1 end) DELETE_rows258                 from {} 
259                 group by dbname,tbname 
260                 order by ALL_rows desc 
261                 limit 10;'''.format(r_num,self.tbrow)262         self.cur.execute(sql)263         rows = self.cur.fetchall()264 265         print('The distribution map of the {} changed rows : '.format(r_num))266         print('tablename'.ljust(50),267               '|','changed_rows'.center(15),268               '|','percent'.center(10),269               '|','insert_rows'.center(18),270               '|','update_rows'.center(18),271               '|','delete_rows'.center(18)272               )273         print('-------------------------------------------------------------------------------------------------------------------------------------------------')274         for row in rows:275             print((row['dbname']+'.'+row['tbname']).ljust(50),276                   '|',str(row['ALL_rows']).rjust(15),277                   '|',(str(int(row['per']))+'%').rjust(10),278                   '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),279                   '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),280                   '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),281                   )282         print('\n')283 284         logging.info('Finished to analyse the binlog file !!!')285 286     def closeconn(self):287         self.cur.close()288         logging.info('release db connections\n')289 290 def main():291     p = queryanalyse()292     p.rowrecord()293     p.binlogdesc()294     p.closeconn()295 296 if name == "main":297     main()

위 내용은 binlog를 기반으로 mysql 행 레코드 수정 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL의 라이센스는 다른 데이터베이스 시스템과 어떻게 비교됩니까?MySQL의 라이센스는 다른 데이터베이스 시스템과 어떻게 비교됩니까?Apr 25, 2025 am 12:26 AM

MySQL은 GPL 라이센스를 사용합니다. 1) GPL 라이센스는 MySQL의 무료 사용, 수정 및 분포를 허용하지만 수정 된 분포는 GPL을 준수해야합니다. 2) 상업용 라이센스는 공개 수정을 피할 수 있으며 기밀이 필요한 상업용 응용 프로그램에 적합합니다.

MyISAM을 통해 언제 innodb를 선택 하시겠습니까?MyISAM을 통해 언제 innodb를 선택 하시겠습니까?Apr 25, 2025 am 12:22 AM

MyISAM 대신 InnoDB를 선택할 때의 상황에는 다음이 포함됩니다. 1) 거래 지원, 2) 높은 동시성 환경, 3) 높은 데이터 일관성; 반대로, MyISAM을 선택할 때의 상황에는 다음이 포함됩니다. 1) 주로 읽기 작업, 2) 거래 지원이 필요하지 않습니다. InnoDB는 전자 상거래 플랫폼과 같은 높은 데이터 일관성 및 트랜잭션 처리가 필요한 응용 프로그램에 적합하지만 MyISAM은 블로그 시스템과 같은 읽기 집약적 및 트랜잭션이없는 애플리케이션에 적합합니다.

MySQL에서 외국 키의 목적을 설명하십시오.MySQL에서 외국 키의 목적을 설명하십시오.Apr 25, 2025 am 12:17 AM

MySQL에서 외국 키의 기능은 테이블 간의 관계를 설정하고 데이터의 일관성과 무결성을 보장하는 것입니다. 외국 키는 참조 무결성 검사 및 계단식 작업을 통해 데이터의 효과를 유지합니다. 성능 최적화에주의를 기울이고 사용할 때 일반적인 오류를 피하십시오.

MySQL의 다른 유형의 인덱스는 무엇입니까?MySQL의 다른 유형의 인덱스는 무엇입니까?Apr 25, 2025 am 12:12 AM

MySQL에는 B-Tree Index, Hash Index, Full-Text Index 및 공간 인덱스의 네 가지 주요 인덱스 유형이 있습니다. 1.B- 트리 색인은 범위 쿼리, 정렬 및 그룹화에 적합하며 직원 테이블의 이름 열에서 생성에 적합합니다. 2. HASH 인덱스는 동등한 쿼리에 적합하며 메모리 저장 엔진의 HASH_Table 테이블의 ID 열에서 생성에 적합합니다. 3. 전체 텍스트 색인은 기사 테이블의 내용 열에서 생성에 적합한 텍스트 검색에 사용됩니다. 4. 공간 지수는 지리 공간 쿼리에 사용되며 위치 테이블의 Geom 열에서 생성에 적합합니다.

MySQL에서 인덱스를 어떻게 생성합니까?MySQL에서 인덱스를 어떻게 생성합니까?Apr 25, 2025 am 12:06 AM

toreateanindexinmysql, usethecreateindexstatement.1) forasinglecolumn, "createindexidx_lastnameonemployees (lastname);"2) foracompositeIndex를 사용하고 "createDexIdx_nameonemployees (forstName, FirstName);"3)을 사용하십시오

MySQL은 sqlite와 어떻게 다릅니 까?MySQL은 sqlite와 어떻게 다릅니 까?Apr 24, 2025 am 12:12 AM

MySQL과 Sqlite의 주요 차이점은 설계 개념 및 사용 시나리오입니다. 1. MySQL은 대규모 응용 프로그램 및 엔터프라이즈 수준의 솔루션에 적합하며 고성능 및 동시성을 지원합니다. 2. SQLITE는 모바일 애플리케이션 및 데스크탑 소프트웨어에 적합하며 가볍고 내부질이 쉽습니다.

MySQL의 색인이란 무엇이며 성능을 어떻게 향상 시키는가?MySQL의 색인이란 무엇이며 성능을 어떻게 향상 시키는가?Apr 24, 2025 am 12:09 AM

MySQL의 인덱스는 데이터 검색 속도를 높이는 데 사용되는 데이터베이스 테이블에서 하나 이상의 열의 주문 구조입니다. 1) 인덱스는 스캔 한 데이터의 양을 줄임으로써 쿼리 속도를 향상시킵니다. 2) B-Tree Index는 균형 잡힌 트리 구조를 사용하여 범위 쿼리 및 정렬에 적합합니다. 3) CreateIndex 문을 사용하여 CreateIndexIdx_customer_idonorders (customer_id)와 같은 인덱스를 작성하십시오. 4) Composite Indexes는 CreateIndexIdx_customer_orderOders (Customer_id, Order_Date)와 같은 다중 열 쿼리를 최적화 할 수 있습니다. 5) 설명을 사용하여 쿼리 계획을 분석하고 피하십시오

MySQL에서 트랜잭션을 사용하여 데이터 일관성을 보장하는 방법을 설명하십시오.MySQL에서 트랜잭션을 사용하여 데이터 일관성을 보장하는 방법을 설명하십시오.Apr 24, 2025 am 12:09 AM

MySQL에서 트랜잭션을 사용하면 데이터 일관성이 보장됩니다. 1) STARTTRANSACTION을 통해 트랜잭션을 시작한 다음 SQL 작업을 실행하고 커밋 또는 롤백으로 제출하십시오. 2) SavePoint를 사용하여 부분 롤백을 허용하는 저장 지점을 설정하십시오. 3) 성능 최적화 제안에는 트랜잭션 시간 단축, 대규모 쿼리 방지 및 격리 수준을 합리적으로 사용하는 것이 포함됩니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음