집 >데이터 베이스 >MySQL 튜토리얼 >MySQL 인덱스 원칙과 느린 쿼리 최적화
뛰어난 성능, 저렴한 비용, 풍부한 리소스를 갖춘 MySQL은 대부분의 인터넷 회사가 선호하는 관계형 데이터베이스가 되었습니다. 성능은 뛰어나지만, 소위 "좋은 말에는 좋은 안장이 따른다"는 말은 개발 엔지니어들에게는 필수 코스가 되었고, "MySQL에 능숙하다", "SQL 문 최적화" 같은 말을 자주 보게 됩니다. 직무 설명, "데이터베이스 원칙 이해" 및 기타 요구 사항에서. 우리는 일반적인 응용 프로그램 시스템에서 읽기-쓰기 비율이 약 10:1이며 삽입 작업과 일반 업데이트 작업이 성능 문제를 거의 일으키지 않으며 문제를 일으킬 가능성이 가장 높은 것은 복잡한 쿼리라는 것을 알고 있습니다. 따라서 쿼리문 최적화가 최우선 과제입니다.
2013년 7월부터 Meituan의 핵심 비즈니스 시스템 부서에서 느린 쿼리 최적화 작업을 진행해 왔으며 총 10개 이상의 시스템이 있으며 수백 개의 느린 쿼리 사례를 해결하고 축적했습니다. 비즈니스의 복잡성이 증가함에 따라 직면하는 문제는 온갖 종류의 이상하고 다양하며 믿을 수 없습니다. 이 문서에서는 개발 엔지니어의 관점에서 데이터베이스 인덱싱의 원리와 느린 쿼리를 최적화하는 방법을 설명하는 것을 목표로 합니다.
시스템 사용자들이 한 기능이 점점 느려지고 있다고 보고해 엔지니어는 위의 SQL을 발견했습니다.
그리고 저를 신나게 발견했습니다. "이 SQL을 최적화해야 합니다. 각 필드에 인덱스를 추가해 주세요."
놀라서 "왜 각 필드에 인덱스를 추가해야 하나요?"라고 물었습니다.
"모든 쿼리 필드에 인덱스를 추가하는 것이 더 빠를 것입니다." 엔지니어는 자신감이 넘칩니다
"이 경우에는 조인트 인덱스 구축이 완전히 가능합니다. 가장 왼쪽 접두사 일치이므로 Operate_time을 맨 마지막에 배치하고 기타 관련 쿼리를 가져와야하며 종합적인 평가가 필요합니다. 됐어요."
"공동지수? 가장 왼쪽 접두사 매칭? 종합평가?" 엔지니어는 깊은 고민에 빠져들지 않을 수 없었다.
대부분의 경우 인덱스가 쿼리 효율성을 향상시킬 수 있다는 것을 알고 있지만 인덱스를 어떻게 구축해야 할까요? 인덱스의 순서는 무엇입니까? 많은 분들이 대략적으로만 알고 계십니다. 사실 이러한 개념을 이해하는 것은 어렵지 않으며, 인덱싱의 원리도 생각보다 훨씬 덜 복잡합니다.
인덱스의 목적은 쿼리 효율성을 높이는 것인데, 이는 사전과 비교할 수 있습니다. "mysql"이라는 단어를 찾으려면 반드시 문자 m을 찾은 다음 아래에서 아래로 문자 y를 찾아야 합니다. 그런 다음 나머지 SQL을 찾으십시오. 색인이 없으면 원하는 것을 찾기 위해 모든 단어를 살펴봐야 할 수도 있습니다. m으로 시작하는 단어를 찾으려면 어떻게 해야 합니까? 아니면 ze로 시작하는 단어는 어떻습니까? 색인이 없으면 이 문제가 전혀 완료될 수 없다고 생각하시나요?
사전 외에도 기차역의 열차 시간표, 도서 목록 등 생활 곳곳에서 색인의 예를 볼 수 있습니다. 얻고자 하는 데이터의 범위를 지속적으로 좁힘으로써 원하는 최종 결과를 필터링할 수 있으며, 동시에 무작위 이벤트를 순차적 이벤트로 전환할 수 있습니다. 즉, 항상 동일한 검색을 사용합니다. 데이터를 잠그는 방법.
데이터베이스의 경우에도 마찬가지이지만 동등한 쿼리뿐만 아니라 범위 쿼리(>, e0664d7293d434d289adbdf728053ec6、d0d3ef2feb1bc4c8d48c16963c753a7e 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可
根据最左匹配原则,最开始的sql语句的索引应该是status、operator_id、type、operate_time的联合索引;其中status、operator_id、type的顺序可以颠倒,所以我才会说,把这个表的所有相关查询都找到,会综合分析;
比如还有如下查询
select * from task where status = 0 and type = 12 limit 10; select count(*) from task where status = 0 ;
那么索引建立成(status,type,operator_id,operate_time)就是非常正确的,因为可以覆盖到所有情况。这个就是利用了索引的最左匹配的原则
关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析
下面几个例子详细解释了如何分析和优化慢查询
很多情况下,我们写SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句
select distinct cert.emp_id from cm_log cl inner join ( select emp.id as emp_id, emp_cert.id as cert_id from employee emp left join emp_certificate emp_cert on emp.id = emp_cert.emp_id where emp.is_deleted=0 ) cert on ( cl.ref_table='Employee' and cl.ref_oid= cert.emp_id ) or ( cl.ref_table='EmpCertificate' and cl.ref_oid= cert.cert_id ) where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00';
0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢
53 rows in set (1.87 sec)
1.explain
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer | | 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where | | 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和cm_log的379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。
如何优化呢?可以看到我们在运行完后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,我们就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。
优化过的语句如下
select emp.id from cm_log cl inner join employee emp on cl.ref_table = 'Employee' and cl.ref_oid = emp.id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 union select emp.id from cm_log cl inner join emp_certificate ec on cl.ref_table = 'EmpCertificate' and cl.ref_oid = ec.id inner join employee emp on emp.id = ec.emp_id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0
4.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致
5.现有索引可以满足,不需要建索引
6.用改造后的语句实验一下,只需要10ms 降低了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的
select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 );
0.先看看运行多长时间,951条数据6.22秒,真的很慢
951 rows in set (6.22 sec)
1.先explain,rows达到了361万,type = ALL表明是全表扫描
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条
3.让explain的rows 尽量逼近951
看一下accurate_result = 1的记录数
select count(*),accurate_result from stage_poi group by accurate_result; +----------+-----------------+ | count(*) | accurate_result | +----------+-----------------+ | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +----------+-----------------+
我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据
再看一下sync_status字段的情况
select count(*),sync_status from stage_poi group by sync_status; +----------+-------------+ | count(*) | sync_status | +----------+-------------+ | 3080 | 0 | | 3085413 | 3 | +----------+-------------+
同样的区分度也很低,根据理论,也不适合建立索引
问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的
4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据
5.根据建立索引规则,使用如下语句建立索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
6.观察预期结果,发现只需要200ms,快了30多倍。
952 rows in set (0.20 sec)
我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 order by c.created_time desc limit 0 , 10;
还是几个步骤
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受
10 rows in set (13.06 sec)
1.explain
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序
select count(*) from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 +----------+ | count(*) | +----------+ | 778878 | +----------+ 1 row in set (5.19 sec)
发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
于是改造成下面的语句,也可以用straight_join来优化
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10;
验证一下效果 预计在1ms内,提升了13000多倍!
10 rows in set (0.00 sec)
本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不同参数的SQL试验下
select sql_no_cache c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 2875 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10; Empty set (2 min 18.99 sec)
2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。
慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。
本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”
参考文献如下:
1.《高性能MySQL》
2.《数据结构与算法分析》
위 내용은 MySQL 인덱스 원칙과 느린 쿼리 최적화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!