찾다
데이터 베이스MySQL 튜토리얼합계 집계 오류를 방지하기 위해 PostgreSQL 창 함수 및 GROUP BY를 올바르게 사용하는 방법은 무엇입니까?

How to Correctly Use PostgreSQL Window Functions and GROUP BY to Avoid Sum Aggregation Errors?

Postgres 창 함수 및 예외별 그룹화: 합계 집계 문제 해결

데이터 분석의 맥락에서 집계가 필요한 경우가 많습니다. 추세와 패턴에 대한 통찰력을 얻기 위해 특정 기간 동안의 값을 분석합니다. SUM()과 같은 PostgreSQL의 집계 함수는 강력한 도구이지만 창 함수와 결합하면 때로는 예상치 못한 결과가 발생할 수 있습니다. 이 문서에서는 GROUP BY 절 내에서 창 함수를 사용할 때 발생하는 일반적인 문제를 해결하여 정확한 집계를 보장하는 솔루션을 제공합니다.

제공된 쿼리에서 알 수 있듯이 목표는 GROUP BY 절의 누적 손익을 계산하는 것이었습니다. 시간이 지남에 따라 사용자. 처음에 쿼리는 지불금과 바이인의 합계를 계산하기 위해 창 기능을 사용했습니다. 하지만 한 이벤트 내에 여러 게임이 포함되어 지급액이 다양하여 결과가 정확하지 않았습니다.

이 문제를 해결하는 열쇠는 창 기능과 집계 기능을 올바르게 사용하는 것입니다. 기본적으로 창 함수는 결과 집합의 개별 행을 유지하면서 ORDER BY 절로 정의된 행 범위 내의 값을 집계합니다. 다만, GROUP BY 절과 함께 사용하는 경우에는 윈도우 함수를 적용한 이후에 그룹화 작업이 수행된다는 점을 기억하는 것이 중요하다. 이 경우 sp.payout 및 s.buyin에 대한 GROUP BY 절이 없으면 집계 창에 여러 이벤트의 행이 포함되어 손익 계산이 잘못되었습니다.

이 문제를 해결하려면 다음과 같은 집계 함수를 사용하세요. SUM()을 창 함수 내에서 사용하여 원하는 집계를 달성할 수 있습니다. 이 조합을 사용하면 각 이벤트 내에서 값을 합산할 수 있으므로 여러 이벤트로 인해 이중 또는 삼중 계산이 발생하는 것을 효과적으로 방지할 수 있습니다.

다음 수정된 쿼리에는 이러한 원칙이 포함되어 있습니다.

SELECT p.name, e.event_id, e.date, 
    sum(sum(sp.payout)) OVER w - sum(sum(s.buyin)) OVER w AS "Profit/Loss" 
FROM player AS p 
JOIN result AS r ON r.player_id = p.player_id 
JOIN game AS g ON g.game_id = r.game_id 
JOIN event AS e ON e.event_id = g.event_id 
JOIN structure AS s ON s.structure_id = g.structure_id 
JOIN structure_payout AS sp ON sp.structure_id = g.structure_id
                          AND sp.position = r.position 
WHERE p.player_id = 17 
GROUP BY e.event_id 
WINDOW w AS (ORDER BY e.date, e.event_id) 
ORDER BY e.date, e.event_id;

In 이 쿼리:

  1. 창 함수 내의 집계 함수: 창 함수 OVER w 내의 외부 sum() 함수는 각 이벤트 내의 sp.payout 및 s.buyin 값을 집계합니다. 이는 이벤트당 총 지불금과 바이인을 효과적으로 계산합니다.
  2. 그룹별: GROUP BY 절은 이벤트를 기반으로 결과를 그룹화하기 위해 e.event_id에서만 사용됩니다. 각 고유 이벤트에 대해 집계가 수행됩니다.
  3. 창 함수 절: WINDOW w AS (ORDER BY e.date, e.event_id)는 창 기능이 작동하는 행 범위를 정의합니다. 이 경우 기간은 이벤트 날짜(e.date)와 이벤트 ID(e.event_id)로 정의됩니다. 이렇게 하면 날짜에 관계없이 개별 이벤트 내에서 집계가 수행됩니다.

이 수정된 접근 방식을 사용하면 쿼리는 각 이벤트의 누적 손익을 정확하게 계산하여 보다 정확한 정보를 제공합니다. 시간 경과에 따른 사용자 성과.

위 내용은 합계 집계 오류를 방지하기 위해 PostgreSQL 창 함수 및 GROUP BY를 올바르게 사용하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL에 저장된 절차는 무엇입니까?MySQL에 저장된 절차는 무엇입니까?May 01, 2025 am 12:27 AM

저장된 절차는 성능을 향상시키고 복잡한 작업을 단순화하기 위해 MySQL에서 사전 컴파일 된 SQL 문입니다. 1. 성능 향상 : 첫 번째 편집 후 후속 통화를 다시 컴파일 할 필요가 없습니다. 2. 보안 향상 : 권한 제어를 통해 데이터 테이블 액세스를 제한합니다. 3. 복잡한 작업 단순화 : 여러 SQL 문을 결합하여 응용 프로그램 계층 로직을 단순화합니다.

쿼리 캐싱은 MySQL에서 어떻게 작동합니까?쿼리 캐싱은 MySQL에서 어떻게 작동합니까?May 01, 2025 am 12:26 AM

MySQL 쿼리 캐시의 작동 원리는 선택 쿼리 결과를 저장하는 것이며 동일한 쿼리가 다시 실행되면 캐시 된 결과가 직접 반환됩니다. 1) 쿼리 캐시는 데이터베이스 읽기 성능을 향상시키고 해시 값을 통해 캐시 된 결과를 찾습니다. 2) MySQL 구성 파일에서 간단한 구성, query_cache_type 및 query_cache_size를 설정합니다. 3) SQL_NO_CACHE 키워드를 사용하여 특정 쿼리의 캐시를 비활성화하십시오. 4) 고주파 업데이트 환경에서 쿼리 캐시는 성능 병목 현상을 유발할 수 있으며 매개 변수의 모니터링 및 조정을 통해 사용하기 위해 최적화해야합니다.

다른 관계형 데이터베이스를 통해 MySQL을 사용하면 어떤 장점이 있습니까?다른 관계형 데이터베이스를 통해 MySQL을 사용하면 어떤 장점이 있습니까?May 01, 2025 am 12:18 AM

MySQL이 다양한 프로젝트에서 널리 사용되는 이유에는 다음이 포함됩니다. 1. 고성능 및 확장 성, 여러 스토리지 엔진을 지원합니다. 2. 사용 및 유지 관리, 간단한 구성 및 풍부한 도구; 3. 많은 지역 사회 및 타사 도구 지원을 유치하는 풍부한 생태계; 4. 여러 운영 체제에 적합한 크로스 플랫폼 지원.

MySQL에서 데이터베이스 업그레이드를 어떻게 처리합니까?MySQL에서 데이터베이스 업그레이드를 어떻게 처리합니까?Apr 30, 2025 am 12:28 AM

MySQL 데이터베이스를 업그레이드하는 단계에는 다음이 포함됩니다. 1. 데이터베이스 백업, 2. 현재 MySQL 서비스 중지, 3. 새 버전의 MySQL 설치, 4. 새 버전의 MySQL 서비스 시작, 5. 데이터베이스 복구. 업그레이드 프로세스 중에 호환성 문제가 필요하며 Perconatoolkit과 같은 고급 도구를 테스트 및 최적화에 사용할 수 있습니다.

MySQL에 사용할 수있는 다른 백업 전략은 무엇입니까?MySQL에 사용할 수있는 다른 백업 전략은 무엇입니까?Apr 30, 2025 am 12:28 AM

MySQL 백업 정책에는 논리 백업, 물리적 백업, 증분 백업, 복제 기반 백업 및 클라우드 백업이 포함됩니다. 1. 논리 백업은 MySQLDump를 사용하여 데이터베이스 구조 및 데이터를 내보내며 소규모 데이터베이스 및 버전 마이그레이션에 적합합니다. 2. 물리적 백업은 데이터 파일을 복사하여 빠르고 포괄적이지만 데이터베이스 일관성이 필요합니다. 3. 증분 백업은 이진 로깅을 사용하여 변경 사항을 기록합니다. 이는 큰 데이터베이스에 적합합니다. 4. 복제 기반 백업은 서버에서 백업하여 생산 시스템에 미치는 영향을 줄입니다. 5. AmazonRDS와 같은 클라우드 백업은 자동화 솔루션을 제공하지만 비용과 제어를 고려해야합니다. 정책을 선택할 때 데이터베이스 크기, 가동 중지 시간 허용 오차, 복구 시간 및 복구 지점 목표를 고려해야합니다.

MySQL 클러스터링이란 무엇입니까?MySQL 클러스터링이란 무엇입니까?Apr 30, 2025 am 12:28 AM

mysqlclusteringenhancesdatabaserobustness andscalabilitydaturedingdataacrossmultiplenodes.itusesthendbenginefordatareplicationandfaulttolerance, highavailability를 보장합니다

MySQL의 성능을 위해 데이터베이스 스키마 설계를 어떻게 최적화합니까?MySQL의 성능을 위해 데이터베이스 스키마 설계를 어떻게 최적화합니까?Apr 30, 2025 am 12:27 AM

MySQL에서 데이터베이스 스키마 설계 최적화는 다음 단계를 통해 성능을 향상시킬 수 있습니다. 1. 인덱스 최적화 : 공통 쿼리 열에서 인덱스 생성, 쿼리의 오버 헤드 균형 및 업데이트 삽입. 2. 표 구조 최적화 : 정규화 또는 정상화를 통한 데이터 중복성을 줄이고 액세스 효율을 향상시킵니다. 3. 데이터 유형 선택 : 스토리지 공간을 줄이기 위해 Varchar 대신 Int와 같은 적절한 데이터 유형을 사용하십시오. 4. 분할 및 하위 테이블 : 대량 데이터 볼륨의 경우 파티션 및 하위 테이블을 사용하여 데이터를 분산시켜 쿼리 및 유지 보수 효율성을 향상시킵니다.

MySQL 성능을 어떻게 최적화 할 수 있습니까?MySQL 성능을 어떻게 최적화 할 수 있습니까?Apr 30, 2025 am 12:26 AM

tooptimizemysqlperformance, followthesesteps : 1) 구현 properIndexingToSpeedUpqueries, 2) useExplaintoAnalyzeanDoptimizeQueryPerformance, 3) AdvertServerConfigUrationSettingstingslikeInnodb_buffer_pool_sizeandmax_connections, 4) uspartOflEtOflEtOflestoI

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기