찾다
백엔드 개발파이썬 튜토리얼Python에서 데코레이터를 효과적으로 사용하고 연결하는 방법은 무엇입니까?

How to Effectively Use and Chain Decorators in Python?

Python에서 데코레이터를 만들고 연결하는 방법

데코레이터 만들기

라는 다른 함수를 사용하는 데코레이터 함수를 작성합니다. "래핑된" 함수 인수:

def my_decorator(func):

    # Code to execute before calling the wrapped function
    print("Before the function runs")

    # Call the wrapped function and store its return value
    result = func()

    # Code to execute after calling the wrapped function
    print("After the function runs")

    # Return the result of the wrapped function
    return result

# Example of a decorator in action
@my_decorator
def say_hello():
    print("Hello, world!")

데코레이터 연결

동일한 기능에 여러 데코레이터를 적용하려면 @ 연산자를 사용하세요.

@my_decorator
@another_decorator
def chained_function():
    print("This function is doubly decorated")

인수가 있는 데코레이터

데코레이터가 수락하도록 허용 인수:

def decorator_with_arg(arg1, arg2):

    def decorator(func):

        # Use the decorator arguments to modify the wrapped function's behavior
        func.arg1 = arg1
        func.arg2 = arg2

        return func

# Example of a decorator with arguments
@decorator_with_arg("foo", "bar")
def my_function():
    print("Args:", my_function.arg1, my_function.arg2)

클래스 메소드용 데코레이터

클래스의 메소드에 데코레이터 사용:

class MyClass:

    @classmethod
    def my_class_method(cls):
        print("This is a class method")

연습: 장식 데코레이터

무엇이든 만들 수 있는 데코레이터를 만듭니다. 다른 데코레이터는 인수를 허용합니다:

def decorator_with_args(decorator_to_enhance):

    def decorator_maker(*args, **kwargs):

        def decorator_wrapper(func):

            # Wrap the original decorator and pass the arguments
            return decorator_to_enhance(func, *args, **kwargs)

        return decorator_wrapper


# Example of a decorated decorator
@decorator_with_args
def decorated_decorator(func, *args, **kwargs):
    print("Args:", args, kwargs)
    return func


@decorated_decorator(10, 20, name="John")
def my_function():
    print("Decorated function")

모범 사례

  • 데코레이터 오버헤드로 인해 코드 속도가 느려지는 것을 방지하세요.
  • functools.wraps를 사용하세요. () 원래 함수의 정보를 보존합니다.
  • 데코레이터는 한 번만 영구적입니다. 함수에 적용됩니다.
  • 외부 라이브러리의 기존 기능을 디버깅하거나 확장하려면 이를 사용하는 것이 좋습니다.

사용 예

데코레이터 사용 다음과 같은 작업:

  • 함수 실행 시간 측정 (@benchmark)
  • 함수 호출 로깅(@logging)
  • 함수 호출 계산(@counter)
  • 함수 결과 캐싱

위 내용은 Python에서 데코레이터를 효과적으로 사용하고 연결하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬 객체의 직렬화 및 사제화 : 1 부파이썬 객체의 직렬화 및 사제화 : 1 부Mar 08, 2025 am 09:39 AM

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

파이썬의 수학 모듈 : 통계파이썬의 수학 모듈 : 통계Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

파이썬으로 전문 오류 처리파이썬으로 전문 오류 처리Mar 04, 2025 am 10:58 AM

이 튜토리얼에서는 전체 시스템 관점에서 Python의 오류 조건을 처리하는 방법을 배웁니다. 오류 처리는 설계의 중요한 측면이며 최종 사용자까지 가장 낮은 수준 (때로는 하드웨어)에서 교차합니다. y라면

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정Mar 08, 2025 am 10:36 AM

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.