Python의 모듈은 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해하는 데 도움이되는 강력한 데이터 통계 분석 기능을 제공합니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오.
이 자습서는 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 함수를 사용하여 평균 값의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. statistics
mean()
import random import statistics from fractions import Fraction as F int_values = [random.randrange(100) for x in range(9)] frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)] mix_values = [*int_values, *frac_values] print(statistics.mean(mix_values)) # 929449/42840 print(statistics.fmean(mix_values)) # 21.69582166199813예외가 발생합니다.
geometric_mean(data, weights=None)
harmonic_mean(data, weights=None)
import statistics growth_rates = [20, 25, 33.33] print(statistics.mean(growth_rates)) # 26.11 print(statistics.geometric_mean(growth_rates)) # 25.542796263143476중앙값
를 계산합니다
StatisticsError
이 함수의 두 번째 매개 변수는 선택 사항입니다. mu
는 주어진 샘플의 평균이며 제공되지 않으면 자동으로 계산됩니다.
import statistics speeds = [30, 40, 60] distance = 100 total_distance = len(speeds) * distance total_time = 0 for speed in speeds: total_time += distance / speed average_speed = total_distance / total_time print(average_speed) # 39.99999999999999 print(statistics.harmonic_mean(speeds)) # 40.0및 함수를 사용하여 계산할 수 있습니다.
import random import statistics from fractions import Fraction as F int_values = [random.randrange(100) for x in range(9)] frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)] mix_values = [*int_values, *frac_values] print(statistics.mean(mix_values)) # 929449/42840 print(statistics.fmean(mix_values)) # 21.69582166199813
요약
이 시리즈의 마지막 튜토리얼에서
위 내용은 파이썬의 수학 모듈 : 통계의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
