하이퍼 스레딩 지원으로 물리적 프로세서 및 코어 감지
소개
스레드 애플리케이션의 경우 스레드 수를 사용 가능한 물리적 프로세서 또는 코어에 맞춰 성능을 최적화하는 것이 중요합니다. 이를 달성하려면 특히 하이퍼스레딩이 포함된 경우 물리적 코어와 가상 코어를 구별하는 것이 필수적입니다. 이 문서에서는 하이퍼 스레딩의 잠재적 존재를 고려하여 물리적 프로세서 및 코어 수를 어떻게 정확하게 감지할 수 있습니까?
하이퍼 스레딩 이해
라는 질문을 다룹니다. 하이퍼스레딩은 물리적 코어 내에 가상 코어를 생성하는 기술입니다. 이를 통해 단일 물리적 코어가 여러 스레드를 처리하여 전체 스레드 수를 효과적으로 늘릴 수 있습니다. 그러나 물리적 코어는 일반적으로 가상 코어에 비해 우수한 성능을 제공한다는 점에 유의해야 합니다.
감지 방법
물리적 프로세서 및 코어 수를 정확하게 감지하려면 CPUID 명령을 활용할 수 있습니다(x86 및 x64 프로세서에서 사용 가능). 이 명령은 다음을 포함하여 프로세서에 대한 공급업체별 정보를 제공합니다.
- CPU 공급업체: 이는 프로세서 제조업체(예: Intel, AMD)를 식별합니다.
- CPU 기능: 여기에는 하이퍼스레딩 지원 및 기타 기능을 나타내는 비트 마스크가 포함됩니다.
- 논리 코어 수: 이는 CPU의 총 코어 수를 나타냅니다. 가상 코어를 포함한 프로세서.
- 물리적 코어 수: 프로세서의 물리적 코어 수를 나타냅니다.
구현
다음 C 코드는 하이퍼스레딩을 고려하여 물리적 프로세서 및 코어를 감지하기 위한 플랫폼 독립적인 방법을 제공합니다.
<code class="cpp">#include <iostream> #include <stdint.h> using namespace std; // Execute CPUID instruction void cpuID(uint32_t functionCode, uint32_t* registers) { #ifdef _WIN32 __cpuid((int*)registers, (int)functionCode); #else asm volatile( "cpuid" : "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]) : "a" (functionCode), "c" (0) ); #endif } int main() { uint32_t registers[4]; uint32_t logicalCoreCount, physicalCoreCount; // Get vendor cpuID(0, registers); string vendor = (char*)(®isters[1]); // Get CPU features cpuID(1, registers); uint32_t cpuFeatures = registers[3]; // Get logical core count cpuID(1, registers); logicalCoreCount = (registers[1] >> 16) & 0xff; cout > 26) & 0x3f) + 1; } else if (vendor == "AuthenticAMD") { // AMD cpuID(0x80000008, registers); physicalCoreCount = ((unsigned)(registers[2] & 0xff)) + 1; } cout <p><strong>결과</strong></p> <p>때 다른 Intel 및 AMD 프로세서에서 실행되면 이 코드는 다음과 유사한 출력을 제공합니다.</p> <p><strong>Intel Core i5-7200U(2개의 물리적 코어, 4개의 논리 코어):</strong></p> <pre class="brush:php;toolbar:false">Logical cores: 4 Physical cores: 2 Hyper-threads: true
AMD Ryzen 7 1700X(8개 물리적 코어, 16개 논리적 코어):
Logical cores: 16 Physical cores: 8 Hyper-threads: true
결론
이 감지 구현 이 방법을 사용하면 개발자는 멀티스레드 애플리케이션의 스레드 수를 사용 가능한 물리적 프로세서 및 코어에 정확하게 맞춰 Windows, Mac 및 Linux 시스템 모두에서 성능을 최적화할 수 있습니다. 이를 통해 기본 하드웨어 리소스를 효율적으로 활용하여 성능을 향상하고 실행 시간을 단축할 수 있습니다.
위 내용은 하이퍼스레딩 지원을 통해 물리적 프로세서 및 코어를 정확하게 감지하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 기사는 기본 (int, float, char 등), 파생 (배열, 포인터, 스트러크) 및 공극 유형을 포함하는 C 함수 리턴 유형에 대해 자세히 설명합니다. 컴파일러는 함수 선언과 반환 명령문을 통해 반환 유형을 결정합니다.

GULC는 최소 오버 헤드, 공격적인 인라인 및 컴파일러 최적화 우선 순위를 정하는 고성능 C 라이브러리입니다. 고주파 거래 및 임베디드 시스템과 같은 성능 크리티컬 애플리케이션에 이상적 인 디자인은 단순성, 모듈을 강조합니다.

이 기사는 C 함수 선언 대 정의, 인수 통과 (값 및 포인터 별), 리턴 값 및 메모리 누출 및 유형 불일치와 같은 일반적인 함정을 설명합니다. 모듈성 및 Provi에 대한 선언의 중요성을 강조합니다.

이 기사는 문자열 케이스 변환에 대한 C 기능을 자세히 설명합니다. ctype.h의 toupper () 및 tolower ()를 사용하고 문자열을 통한 반복 및 널 터미네이터를 처리합니다. ctype.h를 잊어 버리고 문자 그럴을 수정하는 것과 같은 일반적인 함정은 다음과 같습니다.

이 기사에서는 C 기능 반환 값 저장을 검사합니다. 작은 반환 값은 일반적으로 속도 레지스터에 저장됩니다. 더 큰 값은 포인터에 메모리 (스택 또는 힙)를 사용하여 수명에 영향을 미치고 수동 메모리 관리가 필요할 수 있습니다. 직접 ACC

이 기사는 형용사 "별개", 문법 기능, 공통 문구 (예 : "구별", "뚜렷하게 다른") 및 공식 대 비공식의 미묘한 응용 프로그램의 다각적 인 사용을 분석합니다.

이 기사는 효율적인 STL 알고리즘 사용을 자세히 설명합니다. 데이터 구조 선택 (벡터 대 목록), 알고리즘 복잡성 분석 (예 : std :: sort vs. std :: partial_sort), 반복자 사용 및 병렬 실행을 강조합니다. 일반적인 함정과 같은

이 기사에서는 컨테이너, 반복자, 알고리즘 및 함수 인 핵심 구성 요소에 중점을 둔 C 표준 템플릿 라이브러리 (STL)에 대해 설명합니다. 일반적인 프로그래밍을 가능하게하기 위해 이러한 상호 작용, 코드 효율성 및 가독성 개선 방법에 대해 자세히 설명합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
