찾다
백엔드 개발파이썬 튜토리얼FastAPI: Pydantic을 사용하여 쿼리 매개변수를 선언하는 방법

FastAPI에서 가장 기대되는 기능 중 하나가 약 3주 전에 나왔습니다. 적어도 Pydantic Models FastAPI에 관해 이야기할 때는 말이죠.

예, Pydantic 모델을 사용하여 쿼리 매개변수를 매핑하는 기능에 대해 이야기하고 있습니다.

그래서 이번 포스팅에서는 여러분께 다 보여드리려고 ? 할 수 있고? 이 주제에 대해 할 수 없나요?:

? 쿼리 매개변수 매핑

Pydantic으로 쿼리 매개변수 매핑을 시작하기 위해 가장 먼저 해야 할 일은 FastAPI 버전 0.115.0을 사용하고 있는지 확인하는 것입니다.

이후 언제든지 FastAPI 문서로 이동하여 이미 사용 가능한 항목을 확인할 수 있습니다. Sebastián과 팀원들은 문서를 최신 상태로 유지하고 유익한 정보를 제공하는 데 정말 훌륭한 일을 해냈습니다 ✨.

? 약간의 역사

FastAPI에서 쿼리 매개변수를 매핑하는 데 사용한 방법에 대한 몇 가지 예부터 시작하겠습니다. ?

가장 간단한 방법은 다음과 같습니다.

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def search(
    limit: int | None = 10,
    skip: int | None = 1,
    filter: str | None = None
):
    return {
        "limit": limit,
        "skip": skip,
        "filter": filter
    }

이제 간단히 전화를 걸 수 있습니다.

GET http://localhost:8000/?limit=42&skip=12&filter=banana

그러나 이 쿼리 매개변수가 다른 경로에서 사용될 것이라고 식별한 경우 다음과 같이 이를 격리합니다.

from typing import Any
from fastapi import Depends, FastAPI, Query

app = FastAPI()

async def pagination_query_string(
    limit: int | None = Query(10, ge=5, le=100),
    skip: int | None = Query(1, ge=1),
    filter: str | None = Query(None)
) -> dict[str, Any]:
    return {
        "limit": limit,
        "skip": skip,
        "filter": filter
    }

@app.get("/")
async def search(q: dict[str, Any] = Depends(pagination_query_string)):
    return q

또는 Pydantic을 사용하여 모델을 매핑하므로 약간의 리팩토링만으로 다음을 얻을 수 있습니다.

from fastapi import Depends, FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: str | None = None

async def pagination_query_string(
    limit: int | None = Query(10, ge=5, le=100),
    skip: int | None = Query(1, ge=1),
    filter: str | None = Query(None)
) -> PaginationQueryString:
    return PaginationQueryString(
        limit=limit,
        skip=skip,
        filter=filter
    )

@app.get("/")
async def search(q: PaginationQueryString = Depends(pagination_query_string)):
    return q

⌨️ Pydantic을 사용하여 쿼리 문자열 매핑

FastAPI: How to use Pydantic to declare Query Parameters

이제 쿼리 문자열을 얻으려면 함수를 만든 다음 이를 종속성으로 추가할 필요가 없습니다. FastAPI에 PaginationQueryString 유형의 객체를 원하며 이것이 쿼리 문자열임을 간단히 알릴 수 있습니다.

from typing import Annotated
from fastapi import FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: str | None = None

@app.get("/")
async def search(q: Annotated[PaginationQueryString, Query()]):
    return q

쉽죠? ?

⚠️ 제한사항은 무엇인가요?

적어도 0.115.0 버전에서는 중첩된 모델에서는 잘 작동하지 않습니다.

다음과 같이 시도해 보세요.

from typing import Annotated
from fastapi import FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class Filter(BaseModel):
    name: str | None = None
    age: int | None = None
    nickname: str | None = None

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: Filter | None = None

@app.get("/")
async def search(q: Annotated[PaginationQueryString, Query()]):
    return q

이전처럼 부르면:

GET http://localhost:8000/?limit=42&skip=12&filter=chocolate

필터가 객체라는 오류가 발생합니다.

{
    "detail": [
        {
            "type": "model_attributes_type",
            "loc": [
                "query",
                "filter"
            ],
            "msg": "Input should be a valid dictionary or object to extract fields from",
            "input": "chocolate"
        }
    ]
}

적어도 지금 당장은 절대적으로 맞습니다! 우리는 필터를 문자열이 아닌 Pydantic 모델로 변경했습니다. 하지만 이를 사전으로 변환하려고 하면:

http://localhost:8000/?limit=42&skip=12&filter={%22name%22:%20%22Rafael%22,%20%22age%22:%2038,%20%22nickname%22:%20%22ceb10n%22}

FastAPI는 필터가 유효한 사전이어야 한다고 알려줍니다.

{
    "detail": [
        {
            "type": "model_attributes_type",
            "loc": [
                "query",
                "filter"
            ],
            "msg": "Input should be a valid dictionary or object to extract fields from",
            "input": "{\"name\": \"Rafael\", \"age\": 38, \"nickname\": \"ceb10n\"}"
        }
    ]
}

FastAPI가 dict가 아닌 FastAPI에 문자열을 제공하는 Starlette의 QueryParams에 의존하기 때문에 이런 일이 발생합니다. 그리고 적어도 0.115.0 버전에서는 오류가 발생합니다.

⁉️ 그렇다면 언제 쿼리 매개변수와 함께 Pydantic 모델을 사용합니까?

매우 간단합니다.

✅ 정교하고 멋진 중첩 개체가 필요하지 않은 간단한 쿼리 문자열이 있나요? 그것을 사용하십시오! ?

❌ 복잡한 중첩 쿼리 문자열을 생성하셨나요? 아직 사용하지 않으셨나요?. (그리고 쿼리 문자열을 다시 생각해 봐야 할 수도 있습니다. ? 간단할수록 좋습니다 ?)

위 내용은 FastAPI: Pydantic을 사용하여 쿼리 매개변수를 선언하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Apr 01, 2025 pm 05:09 PM

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬 객체의 직렬화 및 사제화 : 1 부파이썬 객체의 직렬화 및 사제화 : 1 부Mar 08, 2025 am 09:39 AM

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 수학 모듈 : 통계파이썬의 수학 모듈 : 통계Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정Mar 08, 2025 am 10:36 AM

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Mar 10, 2025 pm 06:48 PM

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구