참고: 이 게시물에서는 쉽게 따라할 수 있도록 회색조 이미지만 사용합니다.
이미지란 무엇입니까?
이미지는 값의 행렬로 생각할 수 있으며, 각 값은 픽셀의 강도를 나타냅니다. 이미지 형식에는 세 가지 주요 유형이 있습니다.
- 바이너리: 이 형식의 이미지는 0(검은색)과 1(흰색) 값을 갖는 단일 2D 행렬로 표현됩니다. 가장 간단한 형태의 이미지 표현입니다.
- 회색 스케일: 이 형식에서 이미지는 0에서 255 사이의 값을 갖는 단일 2D 행렬로 표현됩니다. 여기서 0은 검정색을 나타내고 255는 흰색을 나타냅니다. 중간 값은 다양한 회색 음영을 나타냅니다.
- RGB 배율: 여기서 이미지는 3개의 2D 행렬(빨간색, 녹색, 파란색 각 색상 채널에 하나씩)로 표현되며 값 범위는 0~255입니다. 각 행렬에는 다음의 픽셀 값이 포함됩니다. 하나의 색상 구성 요소를 사용하고 이 세 가지 채널을 결합하면 풀 컬러 이미지가 생성됩니다.
필터
필터는 특정 작업을 적용하여 이미지를 수정하는 데 사용되는 도구입니다. 필터는 이미지를 가로질러 이동하면서 해당 창 내의 픽셀 값에 대해 계산을 수행하는 행렬(커널이라고도 함)입니다. 우리는 두 가지 일반적인 필터 유형, 즉 평균 필터와 중앙값 필터를 다룰 것입니다.
평균 필터
평균 필터는 창 내의 픽셀 값을 평균화하여 노이즈를 줄이는 데 사용됩니다. 창의 중앙 픽셀을 해당 창 내의 모든 픽셀 값의 평균으로 바꿉니다. cv2.blur() 함수는 커널 크기가 3x3인 평균 필터를 적용합니다. 이는 평균을 계산하기 위해 각 픽셀 주위의 픽셀의 3x3 창을 고려한다는 의미입니다. 이미지를 부드럽게 만드는 데 도움이 됩니다.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) # Applies a Mean Filter of size 3 x 3 blurred_image = cv2.blur(image, (3, 3)) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(blurred_image, cmap='gray') plt.title('Mean Filtered Image') plt.axis("off") plt.show()
중앙값 필터
중앙값 필터는 각 픽셀의 값을 창에 있는 모든 픽셀의 중앙값으로 대체하여 노이즈를 줄이는 데 사용됩니다. 이는 소금과 후추 소음을 제거하는 데 특히 효과적입니다. cv2.medianBlur() 함수는 커널 크기가 3인 중앙값 필터를 적용합니다. 이 메서드는 각 픽셀을 인접 픽셀 값의 중앙값으로 대체하므로 노이즈를 제거하는 동시에 가장자리를 유지하는 데 도움이 됩니다. 여기서 커널 크기가 클수록 이미지가 더 흐려집니다.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) # Applies a Median Filter with a kernel size of 3 blurred_image = cv2.medianBlur(image, 3) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(blurred_image, cmap='gray') plt.title('Median Filtered Image') plt.axis("off") plt.show()
맞춤 필터
맞춤 필터를 만들어 이미지에 특정 작업을 적용할 수 있습니다. cv2.filter2D() 함수를 사용하면 사용자 정의 커널을 이미지에 적용할 수 있습니다. cv2.filter2D() 함수는 이미지에 사용자 정의 커널(필터)을 적용합니다. 커널은 픽셀 값에 대해 수행할 작업을 정의하는 행렬입니다. 이 예에서 커널은 지정된 값을 기반으로 이미지의 특정 기능을 향상시킵니다.
import cv2 import numpy as np import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) # Define a custom filter kernel kernel = np.array([[2, -1, 5], [-5, 5, -1], [0, -1, 0]]) filtered_image = cv2.filter2D(image, -1, kernel) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(filtered_image, cmap='gray') plt.title('Filtered Image') plt.axis('off') plt.show()
임계값
참고: 코드 조각에서 임계값 이미지를 할당할 때 _ , 이미지가 표시됩니다. 이는 cv2.threshold 함수가 사용된 임계값과 임계값 이미지라는 두 가지 값을 반환하기 때문입니다. 임계값 이미지만 필요하므로 _를 사용하여 임계값을 무시합니다.
임계값은 조건에 따라 픽셀 값을 설정하여 이미지를 이진 이미지로 변환합니다. 임계값 기술에는 여러 유형이 있습니다.
전역 임계값
단순 임계값
이 방법은 전체 이미지에 대해 고정된 임계값을 설정합니다. 임계값보다 높은 값을 갖는 픽셀은 최대값(255)으로 설정되고, 그 이하는 0으로 설정됩니다. 간단한 임계값 지정에는 cv2.threshold() 함수가 사용됩니다. 명암도가 127보다 큰 픽셀은 흰색(255)으로 설정되고, 명도가 127 이하인 픽셀은 검정색(0)으로 설정되어 이진 이미지를 생성합니다.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) _, thresholded_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(thresholded_image, cmap='gray') plt.title('Thresholded Image') plt.axis("off") plt.show()
Otsu Thresholding
Otsu's method determines the optimal threshold value automatically based on the histogram of the image. This method minimizes intra-class variance and maximizes inter-class variance. By setting the threshold value to 0 and using cv2.THRESH_OTSU, the function automatically calculates the best threshold value to separate the foreground from the background.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) _, otsu_thresholded_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(otsu_thresholded_image, cmap='gray') plt.title("Otsu's Thresholded Image") plt.axis("off") plt.show()
Adaptive Thresholding
Mean Adaptive Thresholding
In Mean Adaptive Thresholding, the threshold value for each pixel is calculated based on the average of pixel values in a local neighborhood around that pixel. This method adjusts the threshold dynamically across different regions of the image. The cv2.adaptiveThreshold() function calculates the threshold for each pixel based on the mean value of the pixel values in a local 11x11 neighborhood. A constant value of 2 is subtracted from this mean to fine-tune the threshold. This method is effective for images with varying lighting conditions.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) mean_adaptive_thresholded_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(mean_adaptive_thresholded_image, cmap='gray') plt.title('Mean Adaptive Thresholded Image') plt.axis("off") plt.show()
Gaussian Adaptive Thresholding
Gaussian Adaptive Thresholding computes the threshold value for each pixel based on a Gaussian-weighted sum of the pixel values in a local neighborhood. This method often provides better results in cases with non-uniform illumination. In Gaussian Adaptive Thresholding, the threshold is determined by a Gaussian-weighted sum of pixel values in an 11x11 neighborhood. The constant value 2 is subtracted from this weighted mean to adjust the threshold. This method is useful for handling images with varying lighting and shadows.
import cv2 import matplotlib.pyplot as plt image = cv2.imread('McLaren-720S-Price-1200x675.jpg', cv2.IMREAD_GRAYSCALE) gaussian_adaptive_thresholded_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(gaussian_adaptive_thresholded_image, cmap='gray') plt.title('Gaussian Adaptive Thresholded Image') plt.axis("off") plt.show()
References
- Encord.com
- Pyimagesearch.com
- OpenCV Thresholding
- OpenCV Filtering
위 내용은 Python을 사용한 컴퓨터 비전 소개(1부)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
