찾다
기술 주변기기일체 포함오픈 소스와 비공개 소스 모델 '카오스(Chaos)': 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자
Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. E-Mail für die Einreichung: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

Die ersten Autoren dieses Artikels sind Qian Cheng und He Bingxiang, Studenten der Fakultät für Informatik der Tsinghua-Universität. Beide sind Mitglieder von THUNLP. Qian Chengs Hauptforschungsinteressen sind das Lernen von Werkzeugen und große modellgesteuerte Agenten. Er ist im Begriff, an der UIUC zu promovieren. He Bingxiangs Hauptforschungsinteressen sind die Ausrichtung und Sicherheit großer Modelle und er wird demnächst an der Tsinghua-Universität promovieren. Die entsprechenden Autoren dieses Artikels sind Cong Xin und Lin Yankai, und der Betreuer ist außerordentlicher Professor Liu Zhiyuan.

Heutzutage, mit der rasanten Entwicklung der künstlichen Intelligenz, erforschen wir ständig die Intelligenz von Maschinen, aber wir ignorieren oft, wie tief diese intelligenten Agenten uns – ihre Schöpfer – verstehen. Jede Interaktion, jedes Wort, jede Handlung, die wir Menschen im Leben ausführen, ist voller Absichten und Emotionen. Die eigentliche Herausforderung besteht jedoch darin, wie diese impliziten Absichten vom Agenten erfasst, analysiert und darauf reagiert werden können. Herkömmliche intelligente Agenten reagieren schnell auf explizite Befehle, verstehen jedoch komplexe implizite menschliche Absichten oft nicht.

In den letzten Jahren haben Sprachmodelle wie GPT und LLaMA erstaunliche Fähigkeiten bei der Lösung komplexer Aufgaben bewiesen. Obwohl die Agenten mit ihnen als Kern gut darin sind, Strategien zu formulieren und Aufgaben auszuführen, berücksichtigen sie selten robuste Benutzerinteraktionsstrategien. Die von Benutzern gestellten Aufgaben sind in der Regel vage und kurz, was vom Agenten erfordert, dass er nicht nur unsere wörtlichen Anforderungen versteht, sondern auch unsere impliziten Absichten durchschaut.

Damit eine neue Generation intelligenter Agenten von der Öffentlichkeit implementiert und genutzt werden kann, muss sie daher auf den Menschen ausgerichtet sein und sich nicht nur auf die Genauigkeit der Aufgabenausführung konzentrieren, sondern auch darauf, wie eine natürlichere Vorgehensweise geschaffen werden kann , reibungslose und fruchtbare Beziehung zu Menschen.

Um diesen Mangel auszugleichen, hat ein gemeinsames Team der Tsinghua-Universität, der Renmin-Universität und Tencent kürzlich einen „neuen intelligenten Agenteninteraktionsdesignplan“ vorgeschlagen. Diese Arbeit stellt zunächst Intention-in-Interaction (IN3) vor, einen neuen Benchmark, der darauf abzielt, die impliziten Absichten von Benutzern durch explizite Interaktionen mit Benutzern zu verstehen.

Mit Mistral-7B als Rahmen und basierend auf IN3-Training kann Mistral-Interact die Mehrdeutigkeit von Aufgaben proaktiv bewerten, Benutzerabsichten abfragen und sie in umsetzbare Ziele verfeinern, bevor die Ausführung nachgelagerter Agentenaufgaben gestartet wird. Nach der Einbettung des Modells in das XAgent-Framework führt der Artikel eine umfassende Bewertung des vollständig zustandsbehafteten Agentensystems durch.

Die Ergebnisse zeigen, dass diese Lösung eine hervorragende Leistung bei der Identifizierung mehrdeutiger Benutzeraufgaben, der Wiederherstellung und Zusammenfassung wichtiger fehlender Informationen, der Festlegung genauer und notwendiger Ziele für die Agentenausführung und der Reduzierung des Einsatzes redundanter Tools bietet. Diese innovative Methode schließt nicht nur die Lücke in der Interaktion zwischen intelligenten Agenten und Benutzern und stellt den Menschen wirklich in den Mittelpunkt des Designs intelligenter Agenten, sondern bedeutet auch, dass wir dem Ziel, intelligente Agenten zu entwerfen, die besser aufeinander abgestimmt sind, einen Schritt näher kommen mit menschlichen Absichten.

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자

    Papiertitel: Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
  • Papierlink: https://arxiv.org/abs/2402.09205
  • Code-Repository: https ://github.com/HBX-hbx/Mistral-Interact
  • Open-Source-Modell: https://huggingface.co/hbx/Mistral-Interact
  • Open-Source-Datensatz: https://huggingface.co / datasets/hbx/IN3

ㅋㅋ ~                퍼지 태스크와 클리어 태스크 실행의 비교               

현재 에이전트 벤치마크에서는 주어진 작업이 명확하다고 가정하는 경우가 많으며 사용자 의도 이해를 평가의 중요한 측면으로 간주하지 않습니다. 평가 지표의 불완전성을 고려하여 이 작업에서는 명확한 작업 모호성 판단과 사용자 의도 이해를 통해 에이전트의 상호 작용 능력을 평가하는 것을 목표로 하는 IN3(Intention-in-Interaction) 벤치마크를 개발했습니다. ㅋㅋㅋ                                                                                                     IN3 벤치마크 데이터 구성 process
위 그림에서 볼 수 있듯이 사람 쓰기를 기반으로 한 시드 작업은 1단계이며 모델은 반복적으로 새로운 작업을 생성하여 데이터 세트를 향상시킵니다. 데이터 세트를 다음 생성 라운드의 새로운 예로 사용합니다(2단계). 이 Self-Instruct 생성 방법 후에 각 작업의 모호함, 누락된 세부 사항, 각 세부 사항의 중요성 및 잠재적 옵션에 수동으로 주석을 달습니다(3단계).

Mistral-Interact 훈련 프로세스

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자대규모 언어 모델이 에이전트 설계의 핵심이므로 이 작업에서는 먼저 상호 작용에서 현재 오픈 소스 및 폐쇄 소스 모델의 암시적 성능을 평가하기 위한 예비 연구를 수행했습니다. 프로세스. 공식 의도 이해 능력.

구체적으로 기사에서는 IN3에서 무작위로 10개의 작업을 선택하고 이를 LLaMA-2-7B-Chat, Mistral-7B-Instruct-v0.2 및 GPT-4 테스트에 적용하고 이러한 모델을 나타냅니다.i) 작업, ii) 작업이 모호할 때 사용자에게 누락된 세부 정보를 요청하고, iii) 자세한 사용자 작업을 요약합니다.

더 좋지만 여전히 인간 의도 문제에 대한 이해가 부족합니다. 대조적으로, GPT-4는 작업 모호성과 중요한 세부 사항 누락 측면에서 인간 의도에 가장 가깝습니다. 동시에, 예비 탐색은 또한 상호 작용의 암시적 의도를 이해하는 에이전트의 능력을 더욱 향상시키기 위해 단순한 프롬프트 엔지니어링만으로는 목표를 달성하기 위해 현재 오픈 소스 모델을 기반으로 추가 훈련이 필요하다는 것을 보여줍니다. 지능형 에이전트의 적용 정도.
ㅋㅋ                              학습 데이터(IN3 대화 기록) 구성 프로세스
위 그림을 참조하면 IN3의 작업 모호성, 누락된 세부 사항 및 잠재적 옵션에 대한 주석에 따라 이 기사는 구성 과정에서 사용됩니다. 대화는 명확한 초기 추론 체인 구성, 제안된 옵션이 포함된 쿼리 구성, 다양한 사용자 응답 톤 구성 및 추론 체인의 명확한 요약 구성을 포함하는 여러 전략(주황색 상자)을 기록합니다. 이러한 대화 구성 전략은 대상 모델의 쿼리 및 추론 기능을 더 잘 자극합니다.

에이전트 상호작용 능력 종합 평가
에이전트의 암묵적 의도 이해 능력은 사용자 상호작용을 통해 직접적으로 평가할 수도 있고, 다운스트림 작업을 수행하는 에이전트를 통해 간접적으로 평가할 수도 있습니다. 그 중 사용자 상호작용은 의도 이해 자체에 초점을 맞춘 반면, 작업 실행은 의도 이해의 궁극적인 목표, 즉 에이전트의 작업 처리 능력을 향상시키는 데 중점을 둡니다.
따라서 대화형 에이전트 설계를 종합적으로 평가하기 위해 기사에서는 실험을 두 부분으로 나눕니다. i)
명령 이해
: 사용자 상호 작용 중 에이전트의 의도 이해 능력을 평가합니다. ii)
명령 실행: 상호작용 모델을 통합한 후 에이전트의 작업 수행 성능을 평가합니다.
명령어 이해에는 실시간 에이전트 실행이 포함되지 않으므로 이 기사에서는 상호 작용 과정에서 다양한 언어 모델의 성능을 직접 평가하여 에이전트 설계의 업스트림 모듈로서의 상호 작용 기능을 결정합니다. 결과는 다음과 같습니다. 표시:

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자

지침은 테스트 결과를 이해합니다. 그중 화살표는 점수가 높을수록/능력이 낮을수록 작업 모호성 판단 및 누락된 세부 사항 적용 범위와 같은 지표에서 가장 잘 수행됩니다. 상세한 사용자 의도를 바탕으로 명확하고 포괄적인 요약을 제공합니다. 다른 오픈 소스 모델과 비교하여 Mistral-Interact는 퍼지 작업에서 누락된 세부 정보를 요청하는 데 더 합리적인 옵션을 제공할 수 있고 쿼리 방법이 더 친숙하며 성능은 GPT-4와 비슷합니다.
명령 실행 측면에서 에이전트 작업 실행에 대한 암시적 의도 이해의 효율성을 평가하기 위해 이 기사에서는 업스트림 상호 작용 모듈인 Mistral-Interact를 테스트용 XAgent 프레임워크에 통합합니다. 그 중 XAgent는 네트워크 검색, 코드 실행, 명령줄, 파일 시스템 등의 환경에서 상호 작용할 수 있습니다. ㅋㅋ                                                                    명령어 실행 테스트 결과(ST는 하위 작업, MS는 마일스톤)

정량적 평가 결과에 따르면 Mistral-Interact 통합은 다음과 같은 이점을 제공합니다. i) 실행 과정에서 불필요한 목표 설정을 방지합니다. , ii) 에이전트의 실행 프로세스를 세부적인 사용자 의도와 보다 일관되게 만들고, iii) 불필요한 도구 호출을 줄이고 에이전트 도구 사용의 효율성을 높입니다.

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자에이전트 상호 작용 사례 분석

명령 이해 측면에서 다양한 대화 시나리오에서 Mistral-Interact의 견고성을 더욱 입증하기 위해 이 기사에서는 세 가지 사례 분석도 제공합니다.

- 다양한 시나리오의 Mistral-Interact 및 사용자 사례 분석
사례 A는 Mistral-Interact에 대한 다양한 사용자의 어조와 대화 스타일의 영향을 보여줍니다. 기사를 통해 사용자의 답변이 짧거나 상세하거나, 열정적이거나 냉담하거나, 심지어 맞춤법 오류가 포함되어 있어도 Mistral-Interact가 정확하게 이해하고 적절한 응답을 제공할 수 있어 견고함을 입증했습니다.
B의 경우, 사용자가 비협조적인 태도를 보일 때 Mistral-Interact가 계속 질문하고 대화를 다시 정상으로 안내할 수 있는지 테스트했습니다. 그 결과, 사용자가 질문을 회피하더라도 대화를 효과적으로 방향 전환할 수 있는 것으로 나타났습니다.
C의 경우 Mistral-Interact는 사용자가 제공한 추가 정보를 상호 작용 모델에서 명시적으로 요청하지 않은 요약에 통합할 수 있음을 관찰할 수 있습니다. 이는 모델의 쿼리가 누락된 세부 정보를 완전히 처리할 수 없거나 사용자에게 특정 요구 사항이 있는 경우에도 모델이 모든 사용자 의도를 합리적이고 포괄적으로 요약하여 더욱 사용자 친화적으로 만들 수 있음을 보여줍니다.
명령 실행 측면에서 Mistral-Interact의 역할을 보다 명확하게 설명하기 위해 비교 사례 연구를 아래 그림에 제공합니다. ㅋㅋ                                                   연한 빨간색
텍스트는 사용자의 대상이 흐려지면 찾을 수 있습니다. XAgent는 사용자의 요구를 정확하게 반영하는 하위 작업을 정확하게 설정할 수 없습니다.
purple
로 표시된 텍스트에 따르면 XAgent가 불필요한 하위 작업을 설정하는 경우가 종종 있음을 알 수 있습니다. 이는 사용자의 작업이 수행하기에는 너무 모호하고 에이전트가 불필요한 세부 사항을 조작하는 경향이 있어 사용자의 진정한 의도와 일치하지 않기 때문입니다.

오픈 소스와 비공개 소스 모델 카오스(Chaos): 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자

반대로, 명확한 작업 목표를 통해 XAgent는 Mistral-Interact와 적극적으로 상호 작용한 후 보다 구체적인 하위 작업을 공식화할 수 있습니다. 그림에서 green으로 표시된 텍스트는 이러한 일관성을 보여줍니다. 동시에 에이전트 실행 프로세스가 단순해지고 도구 호출 횟수가 줄어듭니다. 이들 모두는 보다 효율적인 에이전트 실행 프로세스를 반영합니다.

결론
우리는 인간-기계 협업, 상호 이해 및 학습의 새로운 장을 목격할 준비가 되어 있는 새로운 출발점에 서 있습니다. 지능형 에이전트는 이제 더 이상 냉정한 정보 처리자가 아니라 섬세한 상호 작용 경험을 통해 처음에는 명확하게 표현되지 않을 수 있는 우리의 요구와 욕구를 깊이 이해할 수 있는 공감하는 파트너가 될 것입니다. 인간 중심 지능형 에이전트 설계의 이러한 혁명은 상호 작용의 무한한 가능성을 드러내고 지능형 에이전트가 우리 삶에 없어서는 안 될 도움이 될 것입니다.

위 내용은 오픈 소스와 비공개 소스 모델 '카오스(Chaos)': 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
AI 게임 개발AI 게임 개발May 02, 2025 am 11:17 AM

격변 게임 : AI 에이전트와의 게임 개발 혁명 Blizzard 및 Obsidian과 같은 업계 대기업의 재향 군인으로 구성된 게임 개발 스튜디오 인 Upheaval은 혁신적인 AI 구동 Platfor로 게임 제작에 혁명을 일으킬 준비가되어 있습니다.

Uber는 Robotaxi 상점이되기를 원합니다. 제공자가 그들을 허락할까요?Uber는 Robotaxi 상점이되기를 원합니다. 제공자가 그들을 허락할까요?May 02, 2025 am 11:16 AM

Uber의 Robotaxi 전략 : 자율 주행 차량을위한 승차원 생태계 최근 Curbivore 컨퍼런스에서 Uber의 Richard Willder는 Robotaxi 제공 업체를위한 승마 플랫폼이되기위한 전략을 공개했습니다. 그들의 지배적 인 위치를 활용합니다

비디오 게임을하는 AI 요원은 미래의 로봇을 변화시킬 것입니다비디오 게임을하는 AI 요원은 미래의 로봇을 변화시킬 것입니다May 02, 2025 am 11:15 AM

비디오 게임은 특히 자율적 인 에이전트 및 실제 로봇의 개발에서 최첨단 AI 연구를위한 귀중한 테스트 근거로 입증되며, 인공 일반 정보 (AGI)에 대한 탐구에 잠재적으로 기여할 수 있습니다. 에이

스타트 업 산업 단지, VC 3.0 및 James Currier 's Manifesto스타트 업 산업 단지, VC 3.0 및 James Currier 's ManifestoMay 02, 2025 am 11:14 AM

진화하는 벤처 캐피탈 환경의 영향은 미디어, 재무 보고서 및 일상적인 대화에서 분명합니다. 그러나 투자자, 신생 기업 및 자금에 대한 구체적인 결과는 종종 간과됩니다. 벤처 캐피탈 3.0 : 패러다임

Adobe 업데이트 Adobe Max London 2025에서 Creative Cloud and FireflyAdobe 업데이트 Adobe Max London 2025에서 Creative Cloud and FireflyMay 02, 2025 am 11:13 AM

Adobe Max London 2025는 Creative Cloud and Firefly에 상당한 업데이트를 제공하여 접근성 및 생성 AI로의 전략적 전환을 반영했습니다. 이 분석에는 Adobe Leadership과의 사전 이벤트 브리핑의 통찰력이 포함되어 있습니다. (참고 : Adob

모든 메타는 Llamacon에서 발표했습니다모든 메타는 Llamacon에서 발표했습니다May 02, 2025 am 11:12 AM

Meta의 Llamacon 발표는 OpenAi와 같은 폐쇄 된 AI 시스템과 직접 경쟁하도록 설계된 포괄적 인 AI 전략을 보여 주며 동시에 오픈 소스 모델을위한 새로운 수익원을 만듭니다. 이 다각적 인 접근법은 Bo를 대상으로합니다

AI가 정상적인 기술에 지나지 않는다는 제안에 대한 양조 논쟁AI가 정상적인 기술에 지나지 않는다는 제안에 대한 양조 논쟁May 02, 2025 am 11:10 AM

이 결론에 대한 인공 지능 분야에는 심각한 차이가 있습니다. 어떤 사람들은 "황제의 새로운 옷"을 폭로 할 때라고 주장하는 반면, 인공 지능은 단지 일반적인 기술이라는 생각에 강력하게 반대합니다. 논의합시다. 이 혁신적인 AI 혁신에 대한 분석은 다양한 영향력있는 AI 복잡성을 식별하고 설명하는 것을 포함하여 AI 분야의 최신 발전을 다루는 진행중인 Forbes 열의 일부입니다 (링크를 보려면 여기를 클릭하십시오). 공통 기술로서의 인공 지능 첫째,이 중요한 토론을위한 토대를 마련하기 위해서는 몇 가지 기본 지식이 필요합니다. 현재 인공 지능을 발전시키는 데 전념하는 많은 연구가 있습니다. 전반적인 목표는 인공 일반 지능 (AGI) 및 가능한 인공 슈퍼 인텔리전스 (AS)를 달성하는 것입니다.

모델 시민, AI 가치가 다음 비즈니스 척도 인 이유모델 시민, AI 가치가 다음 비즈니스 척도 인 이유May 02, 2025 am 11:09 AM

회사의 AI 모델의 효과는 이제 핵심 성과 지표입니다. AI 붐 이후 생일 초대장 작성부터 소프트웨어 코드 작성에 이르기까지 생성 AI는 모든 데 사용되었습니다. 이로 인해 언어 모드가 확산되었습니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구