
Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. E-Mail für die Einreichung: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
Mit Mistral-7B als Rahmen und basierend auf IN3-Training kann Mistral-Interact die Mehrdeutigkeit von Aufgaben proaktiv bewerten, Benutzerabsichten abfragen und sie in umsetzbare Ziele verfeinern, bevor die Ausführung nachgelagerter Agentenaufgaben gestartet wird. Nach der Einbettung des Modells in das XAgent-Framework führt der Artikel eine umfassende Bewertung des vollständig zustandsbehafteten Agentensystems durch.
Die Ergebnisse zeigen, dass diese Lösung eine hervorragende Leistung bei der Identifizierung mehrdeutiger Benutzeraufgaben, der Wiederherstellung und Zusammenfassung wichtiger fehlender Informationen, der Festlegung genauer und notwendiger Ziele für die Agentenausführung und der Reduzierung des Einsatzes redundanter Tools bietet. Diese innovative Methode schließt nicht nur die Lücke in der Interaktion zwischen intelligenten Agenten und Benutzern und stellt den Menschen wirklich in den Mittelpunkt des Designs intelligenter Agenten, sondern bedeutet auch, dass wir dem Ziel, intelligente Agenten zu entwerfen, die besser aufeinander abgestimmt sind, einen Schritt näher kommen mit menschlichen Absichten.
- Papiertitel: Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
- Papierlink: https://arxiv.org/abs/2402.09205
- Code-Repository: https ://github.com/HBX-hbx/Mistral-Interact
- Open-Source-Modell: https://huggingface.co/hbx/Mistral-Interact
- Open-Source-Datensatz: https://huggingface.co / datasets/hbx/IN3
ㅋㅋ ~ 퍼지 태스크와 클리어 태스크 실행의 비교
Mistral-Interact 훈련 프로세스
대규모 언어 모델이 에이전트 설계의 핵심이므로 이 작업에서는 먼저 상호 작용에서 현재 오픈 소스 및 폐쇄 소스 모델의 암시적 성능을 평가하기 위한 예비 연구를 수행했습니다. 프로세스. 공식 의도 이해 능력.
에이전트 상호작용 능력 종합 평가
명령 이해
에이전트 상호 작용 사례 분석
- 다양한 시나리오의 Mistral-Interact 및 사용자 사례 분석
텍스트는 사용자의 대상이 흐려지면 찾을 수 있습니다. XAgent는 사용자의 요구를 정확하게 반영하는 하위 작업을 정확하게 설정할 수 없습니다.
위 내용은 오픈 소스와 비공개 소스 모델 '카오스(Chaos)': 인간의 진짜 의도를 가장 잘 엿볼 수 있는 에이전트가 누구인지 알아보자의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

SQL 위치 절 : 포괄적 인 가이드 SQL WHERE 절은 SQL 문의 기본 구성 요소이며, 레코드를 필터링하고 데이터베이스에서 특정 데이터를 검색하는 데 사용됩니다. 광대 한 고객 데이터베이스를 상상해보십시오 - Where Clause가 당신이 고정 할 수 있습니다

내 칼럼을 처음 접할 수있는 분들을 위해, 나는 구체화 된 AI, AI 추론, AI의 첨단 획기적인 혁신, AI 교육, AI의 수비, ai re

유럽의 야심 찬 AI 대륙 행동 계획은 EU를 인공 지능의 글로벌 리더로 설립하는 것을 목표로합니다. 핵심 요소는 AI Gigafactories 네트워크를 만드는 것입니다. 각각 약 100,000 개의 고급 AI 칩을 보유하고 있습니다 - Capaci의 4 배

AI 에이전트 애플리케이션에 대한 Microsoft의 통합 접근 방식 : 비즈니스를위한 명확한 승리 새로운 AI 에이전트 기능에 관한 Microsoft의 최근 발표는 명확하고 통합 된 프레젠테이션에 깊은 인상을 받았습니다. 많은 기술 발표와는 달리 TE에서 멍청한 것입니다

Shopify CEO Tobi Lütke의 최근 메모는 AI 숙련도가 모든 직원에 대한 근본적인 기대를 대담하게 선언하여 회사 내에서 중요한 문화적 변화를 표시합니다. 이것은 도망가는 트렌드가 아닙니다. 그것은 p에 통합 된 새로운 운영 패러다임입니다

IBM의 Z17 메인 프레임 : 향상된 비즈니스 운영을 위해 AI를 통합합니다 지난 달, IBM의 뉴욕 본사에서 Z17의 기능을 미리 보았습니다. Z16의 성공을 기반으로 (2022 년에 시작되어 지속적인 수익을 보여주는 시연

흔들리지 않는 자신감을 해제하고 외부 검증의 필요성을 제거하십시오! 이 다섯 개의 chatgpt 프롬프트는 완전한 자립과 자기 인식의 변형적인 변화로 당신을 안내 할 것입니다. 간단히 괄호를 복사, 붙여 넣기 및 사용자 정의하십시오

인공 지능 보안 및 연구 회사 인 Anthropic의 최근 [연구]는 이러한 복잡한 과정에 대한 진실을 밝히기 시작하여 우리 자신의인지 영역과 방해가되는 복잡성을 보여줍니다. 자연 지능과 인공 지능은 우리가 생각하는 것보다 더 유사 할 수 있습니다. 내부 스누핑 : 의인성 해석 가능성 연구 Anthropic이 수행 한 연구에서 얻은 새로운 연구 결과는 AI의 내부 컴퓨팅을 역 엔지니어링하는 것을 목표로하는 기계적 해석 성 분야에서 상당한 발전을 나타냅니다. AI가하는 일을 관찰 할뿐만 아니라 인공 뉴런 수준에서 어떻게 수행하는지 이해합니다. 누군가가 특정한 대상을 보거나 특정한 아이디어에 대해 생각할 때 어떤 뉴런이 발사하는지 그림으로 뇌를 이해하려고한다고 상상해보십시오. 에이


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
