现在,我们知道优化器如何对这些技术做出反应,清楚地说明 bitmap 索引和 B-tree 索引各自的最好应用
现在,我们知道优化器如何对这些技术做出反应,清楚地说明 bitmap 索引和 B-tree 索引各自的最好应用。
在 GENDER 列适当地带一个 bitmap 索引,在 SAL 列上创建另外一个位图索引,然后执行一些查询。在这些列上,用 B-tree 索引重新执行查询。
从 TEST_NORMAL 表,查询工资为如下的男员工:
1000
1500
2000
2500
3000
3500
4000
4500
因此:
SQL> select * from test_normal
2 where sal in (1000,1500,2000,2500,3000,3500,4000,4500,5000) and GENDER='M';
已选择444行。
执行计划
----------------------------------------------------------
Plan hash value: 4115571900
--------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |
--------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 39 | 1 (0)| 00:00:01 |
|* 1 | TABLE ACCESS BY INDEX ROWID | TEST_NORMAL | 1 | 39 | 1 (0)| 00:00:01 |
| 2 | BITMAP CONVERSION TO ROWIDS| | | | | |
|* 3 | BITMAP INDEX SINGLE VALUE | NORMAL_GENDER_BMX | | | | |
--------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("SAL"=1000 OR "SAL"=1500 OR "SAL"=2000 OR "SAL"=2500 OR "SAL"=3000
OR
"SAL"=3500 OR "SAL"=4000 OR "SAL"=4500 OR "SAL"=5000)
3 - access("GENDER"='M')
统计信息
----------------------------------------------------------
0 recursive calls
0 db block gets
6280 consistent gets
0 physical reads
0 redo size
25451 bytes sent via SQL*Net to client
839 bytes received via SQL*Net from client
31 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
444 rows processed
SQL>
这是一个典型的数据仓库查询,不要再 OLTP(On-Line Transaction Processing,联机事务处理系统)系统上执行。下面是 bitmap 索引的结果:
而 B-tree 索引的查询:
SQL> select * from test_normal
2 where sal in (1000,1500,2000,2500,3000,3500,4000,4500,5000) and GENDER='M';
已选择444行。
执行计划
----------------------------------------------------------
Plan hash value: 654360527
-------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 39 | 2 (0)| 00:00:01 |
|* 1 | TABLE ACCESS BY INDEX ROWID| TEST_NORMAL | 1 | 39 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | NORMAL_GENDER_IDX | 1 | | 2 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("SAL"=1000 OR "SAL"=1500 OR "SAL"=2000 OR "SAL"=2500 OR "SAL"=3000
OR
"SAL"=3500 OR "SAL"=4000 OR "SAL"=4500 OR "SAL"=5000)
2 - access("GENDER"='M')
统计信息
----------------------------------------------------------
0 recursive calls
0 db block gets
6854 consistent gets
0 physical reads
0 redo size
25451 bytes sent via SQL*Net to client
839 bytes received via SQL*Net from client
31 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
444 rows processed
SQL>
对 B-tree 索引,优化器选择了全表扫描,而在 bitmap 索引的情况下,使用了索引。可以通过 IO 推断出性能。
一般,bitmap 索引对 DSS 最合适,而不管基数怎么样,原因如下:
对于 bitmap 索引,优化器可能高效低相应包含 AND、OR 或 XOR 的查询。(Oracle 支持动态的 B-tree 到 bitmap 转换,但是效率不是很高。
对 bitmap 索引,当查询或计数 null 时,优化器会响应查询。null 值也被 bitmap 索引索引(这不同于 B-tree 索引)。
更重要的是,DSS 系统的 bitmap 索引支持 ad hoc 查询,而 B-tree 索引则不。更特别地,如果你有带 50 列的一个表,而用户频繁查询它们中的 10 个——或所有 10 个列的组合,或一个列——创建 B-tree 索引将会很困难。如果你在这些所有的列上创建 10 个 bitmap 索引,那么所有的查询都会被这些索引响应,而不论是在 10 个列上查询,还是 4、6 个列,或只一个列。AND_EQUAL 优化器提示为 B-tree 索引提供这个功能,但是不能超过 5 个索引。bitmap 索引就没有这个限制。
相比之下,B-tree 索引很适合 OLTP 应用程序,这样的系统用户查询比较常规(在部署前,可以调整),与 ad hoc 查询相对,它不是很频繁,在飞业务高峰时间执行。因为,OLTP 系统经常更新和删除,所以,在这种情况下,bitmap 索引可以导致一个严重的锁问题。
这里的数据是很明显。两个索引目标相同:尽可能快地返回结果。但选择使用哪个完全取决于应用的类型,而不是基数的水平。

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

MySQL 비동기 마스터 슬레이브 복제는 Binlog를 통한 데이터 동기화를 가능하게하여 읽기 성능 및 고 가용성을 향상시킵니다. 1) 마스터 서버 레코드는 Binlog로 변경됩니다. 2) 슬레이브 서버는 I/O 스레드를 통해 Binlog를 읽습니다. 3) 서버 SQL 스레드는 데이터를 동기화하기 위해 Binlog를 적용합니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

MySQL의 설치 및 기본 작업에는 다음이 포함됩니다. 1. MySQL 다운로드 및 설치, 루트 사용자 비밀번호를 설정하십시오. 2. SQL 명령을 사용하여 CreateAbase 및 CreateTable과 같은 데이터베이스 및 테이블을 만듭니다. 3. CRUD 작업을 실행하고 삽입, 선택, 업데이트, 명령을 삭제합니다. 4. 성능을 최적화하고 복잡한 논리를 구현하기 위해 인덱스 및 저장 절차를 생성합니다. 이 단계를 사용하면 MySQL 데이터베이스를 처음부터 구축하고 관리 할 수 있습니다.

innodbbufferpool은 데이터와 색인 페이지를 메모리에로드하여 MySQL 데이터베이스의 성능을 향상시킵니다. 1) 데이터 페이지가 버퍼 풀에로드되어 디스크 I/O를 줄입니다. 2) 더러운 페이지는 정기적으로 디스크로 표시되고 새로 고침됩니다. 3) LRU 알고리즘 관리 데이터 페이지 제거. 4) 읽기 메커니즘은 가능한 데이터 페이지를 미리로드합니다.

MySQL은 설치가 간단하고 강력하며 데이터를 쉽게 관리하기 쉽기 때문에 초보자에게 적합합니다. 1. 다양한 운영 체제에 적합한 간단한 설치 및 구성. 2. 데이터베이스 및 테이블 작성, 삽입, 쿼리, 업데이트 및 삭제와 같은 기본 작업을 지원합니다. 3. 조인 작업 및 하위 쿼리와 같은 고급 기능을 제공합니다. 4. 인덱싱, 쿼리 최적화 및 테이블 파티셔닝을 통해 성능을 향상시킬 수 있습니다. 5. 데이터 보안 및 일관성을 보장하기위한 지원 백업, 복구 및 보안 조치.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

드림위버 CS6
시각적 웹 개발 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
