接上一篇... 见: http://www.linuxidc.com/Linux/2013-04/82787.htm Group 为了方便我还是把我的表结构贴上来: 和数据库一样g
接上一篇... 见:
为了方便我还是把我的表结构贴上来:
和数据库一样group常常用于统计。MongoDB的group还有很多限制,如:返回结果集不能超过16M,, group操作不会处理超过10000个唯一键,好像还不能利用索引[不很确定]。
Group大约需要一下几个参数。
下面我用Java对他们做一些测试。
我们以age年龄统计集合中存在的用户。Spring Schema和上次的一样。有了MongoTemplate对象我们可以做所有事的。以age统计用户测试代码如:
@Test
public void testGroupBy() throws Exception {
String reduce = "function(doc, aggr){" +
" aggr.count += 1;" +
" }";
Query query = Query.query(Criteria.where("age").exists(true));
DBObject result = mongoTemplate.getCollection("person").group(new BasicDBObject("age", 1),
query.getQueryObject(),
new BasicDBObject("count", 0),
reduce);
Map map = result.toMap();
System.out.println(map);
for (Map.Entry o : map.entrySet()) {
System.out.println(o.getKey() + " " + o.getValue());
}
}
key为new BasicDBObject("age", 1)
cond为:Criteria.where("age").exists(true)。即用户中存在age字段的。
initial为:new BasicDBObject("count", 0),即初始化reduce中人的个数为count为0。假如我们想在查询的时候给每个年龄的人增加10个假用户。我们只需要传入BasicDBObject("count", 10).
reduce为:reduce的javascript函数
上面的执行输出如:
2 [age:23.0, count:1.0]
1 [age:25.0, count:1.0]
0 [age:24.0, count:1.0]
前面的是一个序号,是Mongo的java-driver加上去的。我们可以看到结果在后面。

느린 쿼리 로그를 활성화하고 임계 값을 설정하여 MySQL에서 느린 쿼리를 식별 할 수 있습니다. 1. 느린 쿼리 로그를 활성화하고 임계 값을 설정하십시오. 2. 느린 쿼리 로그 파일을보고 분석하고 심층 분석을 위해 MySQLDumpSlow 또는 PT-Query 소수성과 같은 도구를 사용하십시오. 3. 인덱스 최적화, 쿼리 재 작성 및 select*의 사용을 피함으로써 느린 쿼리 최적화를 달성 할 수 있습니다.

MySQL 서버의 건강 및 성능을 모니터링하려면 시스템 건강, 성능 지표 및 쿼리 실행에주의를 기울여야합니다. 1) 시스템 건강 모니터링 : CPU, 메모리, 디스크 I/O 및 네트워크 활동을 볼 수 있도록 상단, HTOP 또는 ShowGlobalStatus 명령을 사용하십시오. 2) 성능 표시기 추적 : 초당 쿼리 번호, 평균 쿼리 시간 및 캐시 적중률과 같은 주요 표시기를 모니터링합니다. 3) 쿼리 실행 최적화 확인 : 실행 시간이 설정 임계 값을 초과하는 쿼리를 느린 쿼리 로그를 활성화하고 기록 및 최적화하십시오.

MySQL과 Mariadb의 주요 차이점은 성능, 기능 및 라이센스입니다. 1. MySQL은 Oracle에 의해 개발되었으며 Mariadb는 포크입니다. 2. MariaDB는 높은 하중 환경에서 더 나은 성능을 발휘할 수 있습니다. 3. Mariadb는 더 많은 스토리지 엔진과 기능을 제공합니다. 4.MySQL은 듀얼 라이센스를 채택하고 MariaDB는 완전히 오픈 소스입니다. 선택할 때 기존 인프라, 성능 요구 사항, 기능 요구 사항 및 라이센스 비용을 고려해야합니다.

MySQL은 GPL 라이센스를 사용합니다. 1) GPL 라이센스는 MySQL의 무료 사용, 수정 및 분포를 허용하지만 수정 된 분포는 GPL을 준수해야합니다. 2) 상업용 라이센스는 공개 수정을 피할 수 있으며 기밀이 필요한 상업용 응용 프로그램에 적합합니다.

MyISAM 대신 InnoDB를 선택할 때의 상황에는 다음이 포함됩니다. 1) 거래 지원, 2) 높은 동시성 환경, 3) 높은 데이터 일관성; 반대로, MyISAM을 선택할 때의 상황에는 다음이 포함됩니다. 1) 주로 읽기 작업, 2) 거래 지원이 필요하지 않습니다. InnoDB는 전자 상거래 플랫폼과 같은 높은 데이터 일관성 및 트랜잭션 처리가 필요한 응용 프로그램에 적합하지만 MyISAM은 블로그 시스템과 같은 읽기 집약적 및 트랜잭션이없는 애플리케이션에 적합합니다.

MySQL에서 외국 키의 기능은 테이블 간의 관계를 설정하고 데이터의 일관성과 무결성을 보장하는 것입니다. 외국 키는 참조 무결성 검사 및 계단식 작업을 통해 데이터의 효과를 유지합니다. 성능 최적화에주의를 기울이고 사용할 때 일반적인 오류를 피하십시오.

MySQL에는 B-Tree Index, Hash Index, Full-Text Index 및 공간 인덱스의 네 가지 주요 인덱스 유형이 있습니다. 1.B- 트리 색인은 범위 쿼리, 정렬 및 그룹화에 적합하며 직원 테이블의 이름 열에서 생성에 적합합니다. 2. HASH 인덱스는 동등한 쿼리에 적합하며 메모리 저장 엔진의 HASH_Table 테이블의 ID 열에서 생성에 적합합니다. 3. 전체 텍스트 색인은 기사 테이블의 내용 열에서 생성에 적합한 텍스트 검색에 사용됩니다. 4. 공간 지수는 지리 공간 쿼리에 사용되며 위치 테이블의 Geom 열에서 생성에 적합합니다.

toreateanindexinmysql, usethecreateindexstatement.1) forasinglecolumn, "createindexidx_lastnameonemployees (lastname);"2) foracompositeIndex를 사용하고 "createDexIdx_nameonemployees (forstName, FirstName);"3)을 사용하십시오


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구
