찾다
데이터 베이스MySQL 튜토리얼InnoDB一定会在索引中加上主键吗

InnoDB一定会在索引中加上主键吗

Jun 07, 2016 pm 04:35 PM
dbainnodb하나기본 키색인논의하다

DBA 群里在讨论一个问题,到底InnoDB会不会在索引末尾加上主键,什么时候会加? 我之前看代码记得是如果索引末尾就是主键,那么InnoDB就不再添加主键了,如果索引末尾不是主键,那么会添加主键,但是这跟测试结果不符: CREATETABLE t ( a char(32)notnullpr

DBA群里在讨论一个问题,到底InnoDB会不会在索引末尾加上主键,什么时候会加?

我之前看代码记得是如果索引末尾就是主键,那么InnoDB就不再添加主键了,如果索引末尾不是主键,那么会添加主键,但是这跟测试结果不符:

CREATETABLE t (
  a char(32)notnullprimarykey,
  b char(32)notnull,KEY idx1 (a,b),KEY idx2 (b,a)) Engine=InnoDB;

插入部分数据后可以看到idx1和idx2两个索引的大小相同。这说明idx1和idx2的内部结构是一样的,因此 不可能 是idx1在内部存为(a,b,a)。

在登博的指导下看了 dict0dict.cc:dict_index_build_internal_non_clust() 这个函数,就是构造索引的数据字典的过程,理解了这个过程就明白了,我们接下来解读下这个函数(基于5.6最近trunk):

2727/*******************************************************************//**2728 Builds the internal dictionary cache representation for a non-clustered2729 index, containing also system fields not defined by the user.2730 @return own: the internal representation of the non-clustered index */2731static2732 dict_index_t*2733 dict_index_build_internal_non_clust(2734/*================================*/2735const dict_table_t* table,  /*!mutex)));2748   ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);27492750/* The clustered index should be the first in the list of indexes */2751   clust_index = UT_LIST_GET_FIRST(table->indexes);27522753   ut_ad(clust_index);2754   ut_ad(dict_index_is_clust(clust_index));2755   ut_ad(!dict_index_is_univ(clust_index));27562757/* Create a new index */2758   new_index = dict_mem_index_create(2759     table->name, index->name, index->space, index->type,
2760     index->n_fields +1+ clust_index->n_uniq);27612762/* Copy other relevant data from the old index2763   struct to the new struct: it inherits the values */27642765   new_index->n_user_defined_cols = index->n_fields;27662767   new_index->id = index->id;27682769/* Copy fields from index to new_index */2770   dict_index_copy(new_index, index, table, 0, index->n_fields);27712772/* Remember the table columns already contained in new_index */2773   indexed =static_cast<ibool>(2774     mem_zalloc(table->n_cols *sizeof*indexed));27752776/* Mark the table columns already contained in new_index */2777for(i =0; i n_def; i++){27782779     field = dict_index_get_nth_field(new_index, i);27802781/* If there is only a prefix of the column in the index2782     field, do not mark the column as contained in the index */27832784if(field->prefix_len ==0){27852786       indexed[field->col->ind]= TRUE;2787}2788}27892790/* Add to new_index the columns necessary to determine the clustered2791   index entry uniquely */27922793for(i =0; i n_uniq; i++){27942795     field = dict_index_get_nth_field(clust_index, i);27962797if(!indexed[field->col->ind]){2798       dict_index_add_col(new_index, table, field->col,
2799              field->prefix_len);2800}2801}28022803   mem_free(indexed);28042805if(dict_index_is_unique(index)){2806     new_index->n_uniq = index->n_fields;2807}else{2808     new_index->n_uniq = new_index->n_def;2809}28102811/* Set the n_fields value in new_index to the actual defined2812   number of fields */28132814   new_index->n_fields = new_index->n_def;28152816   new_index->cached = TRUE;28172818return(new_index);2819}</ibool>

这是整个函数,读者最好可以先自己读读这个函数理解一下,然后再看分析。

好了,下面我们开始分析了,首先把 dict_table_t 这个结构体的相关成员解释一下:

474unsigned  n_user_defined_cols:10;475/*!

注释很好理解,主要是 n_uniq 表示索引中需要多少个字段来唯一标识一行数据,只对唯一索引有效;n_def 是有多少个字段用了扩展存储空间,就是索引中只存前缀; n_fields 是索引最终一共有多少字段,包括系统加的;n_user_defined_cols 是用户定义的字段数,不包括系统自动加的。

然后我们来看两段最主要的代码:

2772/* Remember the table columns already contained in new_index */2773   indexed =static_cast<ibool>(2774     mem_zalloc(table->n_cols *sizeof*indexed));27752776/* Mark the table columns already contained in new_index */2777for(i =0; i n_def; i++){27782779     field = dict_index_get_nth_field(new_index, i);27802781/* If there is only a prefix of the column in the index2782     field, do not mark the column as contained in the index */27832784if(field->prefix_len ==0){27852786       indexed[field->col->ind]= TRUE;2787}2788}</ibool>

InnoDB首先创建了一个布尔型数组,然后依次循环索引上的每一个字段,如果这个字段不是只有前缀,那么就在数组中记下它的索引号,标记这个字段在索引中出现了。因此indexed数组就存下了索引中用户定义的所有字段序号。

2790/* Add to new_index the columns necessary to determine the clustered2791   index entry uniquely */27922793for(i =0; i n_uniq; i++){27942795     field = dict_index_get_nth_field(clust_index, i);27962797if(!indexed[field->col->ind]){2798       dict_index_add_col(new_index, table, field->col,
2799              field->prefix_len);2800}2801}

这一段就开始循环聚集索引(主键)的每个字段,盘下indexed数组中这个字段是不是有了,如果没有,那么再调用 dict_index_add_col 把字段加到索引中。

因此只要用户定义的索引字段中包含了主键中的字段,那么这个字段就不会再被InnoDB自动加到索引中了,如果用户的索引字段中没有完全包含主键字段,InnoDB就会把剩下的主键字段加到索引末尾。

因此我们最初的例子中, idx1 和 idx2 两个索引内部大小完全一样,没有区别。

最后再补充下组合主键的例子:

CREATETABLE t (
  a char(32)notnull,
  b char(32)notnull,
  c char(32)notnull,
  d char(32)notnull,PRIMARYKEY(a,b)KEY idx1 (c,a),KEY idx2 (d,b)) Engine=InnoDB;

这个表InnoDB会自动补全主键字典,idx1 实际上内部存储为 (c,a,b),idx2 实际上内部存储为 (d,b,a)。
但是这个自动添加的字段,Server层是不知道的,所以MySQL优化器并不知道这个字段的存在,所以如果你有一个查询:

SELECT * FROM t WHERE d=x1 AND b=x2 ORDER BY a;

其实内部存储的idx2(d,b,a)可以让这个查询完全走索引,但是由于Server层不知道,所以最终MySQL优化器可能选择 idx2(d,b) 做过滤然后排序 a 字段,或者直接用PK扫描避免排序。

而如果我们定义表结构的时候就定义为 KEY idx2(d,b,a) ,那么MySQL就知道(d,b,a)三个字段索引中都有,并且InnoDB发现用户定义的索引中包含了所有的主键字段,也不会再添加了,并没有增加存储空间。

因此,由衷的建议,所有的DBA建索引的时候,都在业务要求的索引字段后面补上主键字段,这没有任何损失,但是可能给你带来意外的惊喜。

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
산성 특성 (원자력, 일관성, 분리, 내구성)을 설명하십시오.산성 특성 (원자력, 일관성, 분리, 내구성)을 설명하십시오.Apr 16, 2025 am 12:20 AM

산성 속성에는 원자력, 일관성, 분리 및 내구성이 포함되며 데이터베이스 설계의 초석입니다. 1. 원자력은 거래가 완전히 성공적이거나 완전히 실패하도록합니다. 2. 일관성은 거래 전후에 데이터베이스가 일관성을 유지하도록합니다. 3. 격리는 거래가 서로를 방해하지 않도록합니다. 4. 지속성은 거래 제출 후 데이터가 영구적으로 저장되도록합니다.

MySQL : 데이터베이스 관리 시스템 대 프로그래밍 언어MySQL : 데이터베이스 관리 시스템 대 프로그래밍 언어Apr 16, 2025 am 12:19 AM

MySQL은 데이터베이스 관리 시스템 (DBMS) 일뿐 만 아니라 프로그래밍 언어와 밀접한 관련이 있습니다. 1) DBMS로서 MySQL은 데이터를 저장, 구성 및 검색하는 데 사용되며 인덱스 최적화는 쿼리 성능을 향상시킬 수 있습니다. 2) SQL과 같은 ORM 도구를 사용하여 Python에 내장 된 SQL과 프로그래밍 언어를 결합하면 작업을 단순화 할 수 있습니다. 3) 성능 최적화에는 인덱싱, 쿼리, 캐싱, 라이브러리 및 테이블 부서 및 거래 관리가 포함됩니다.

MySQL : SQL 명령으로 데이터 관리MySQL : SQL 명령으로 데이터 관리Apr 16, 2025 am 12:19 AM

MySQL은 SQL 명령을 사용하여 데이터를 관리합니다. 1. 기본 명령에는 선택, 삽입, 업데이트 및 삭제가 포함됩니다. 2. 고급 사용에는 조인, 하위 쿼리 및 집계 함수가 포함됩니다. 3. 일반적인 오류에는 구문, 논리 및 성능 문제가 포함됩니다. 4. 최적화 팁에는 인덱스 사용, 선택*을 피하고 한계 사용이 포함됩니다.

MySQL의 목적 : 데이터를 효과적으로 저장하고 관리합니다MySQL의 목적 : 데이터를 효과적으로 저장하고 관리합니다Apr 16, 2025 am 12:16 AM

MySQL은 데이터 저장 및 관리에 적합한 효율적인 관계형 데이터베이스 관리 시스템입니다. 장점에는 고성능 쿼리, 유연한 트랜잭션 처리 및 풍부한 데이터 유형이 포함됩니다. 실제 애플리케이션에서 MySQL은 종종 전자 상거래 플랫폼, 소셜 네트워크 및 컨텐츠 관리 시스템에서 사용되지만 성능 최적화, 데이터 보안 및 확장성에주의를 기울여야합니다.

SQL 및 MySQL : 관계 이해SQL 및 MySQL : 관계 이해Apr 16, 2025 am 12:14 AM

SQL과 MySQL의 관계는 표준 언어와 특정 구현의 관계입니다. 1.SQL은 관계형 데이터베이스를 관리하고 운영하는 데 사용되는 표준 언어로, 데이터 추가, 삭제, 수정 및 쿼리를 허용합니다. 2.MySQL은 SQL을 운영 언어로 사용하고 효율적인 데이터 저장 및 관리를 제공하는 특정 데이터베이스 관리 시스템입니다.

InnoDB Redo Logs 및 Undo Logs의 역할을 설명하십시오.InnoDB Redo Logs 및 Undo Logs의 역할을 설명하십시오.Apr 15, 2025 am 12:16 AM

InnoDB는 Redologs 및 Undologs를 사용하여 데이터 일관성과 신뢰성을 보장합니다. 1. Redologs는 사고 복구 및 거래 지속성을 보장하기 위해 데이터 페이지 수정을 기록합니다. 2. 결점은 원래 데이터 값을 기록하고 트랜잭션 롤백 및 MVCC를 지원합니다.

설명 출력 (유형, 키, 행, 추가)에서 찾아야 할 주요 메트릭은 무엇입니까?설명 출력 (유형, 키, 행, 추가)에서 찾아야 할 주요 메트릭은 무엇입니까?Apr 15, 2025 am 12:15 AM

설명 명령에 대한 주요 메트릭에는 유형, 키, 행 및 추가가 포함됩니다. 1) 유형은 쿼리의 액세스 유형을 반영합니다. 값이 높을수록 Const와 같은 효율이 높아집니다. 2) 키는 사용 된 인덱스를 표시하고 NULL은 인덱스가 없음을 나타냅니다. 3) 행은 스캔 한 행의 수를 추정하여 쿼리 성능에 영향을 미칩니다. 4) Extra는 최적화해야한다는 Filesort 프롬프트 사용과 같은 추가 정보를 제공합니다.

설명에서 임시 상태를 사용하고 피하는 방법은 무엇입니까?설명에서 임시 상태를 사용하고 피하는 방법은 무엇입니까?Apr 15, 2025 am 12:14 AM

Temporary를 사용하면 MySQL 쿼리에 임시 테이블을 생성해야 할 필요성이 있으며, 이는 별개의, 그룹 비 또는 비 인덱스 열을 사용하여 순서대로 발견됩니다. 인덱스 발생을 피하고 쿼리를 다시 작성하고 쿼리 성능을 향상시킬 수 있습니다. 구체적으로, 설명 출력에 사용되는 경우, MySQL은 쿼리를 처리하기 위해 임시 테이블을 만들어야 함을 의미합니다. 이것은 일반적으로 다음과 같은 경우에 발생합니다. 1) 별개 또는 그룹을 사용할 때 중복 제거 또는 그룹화; 2) OrderBy가 비 인덱스 열이 포함되어있을 때 정렬하십시오. 3) 복잡한 하위 쿼리 또는 조인 작업을 사용하십시오. 최적화 방법은 다음과 같습니다. 1) Orderby 및 GroupB

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기