周海汉?2013.7.24 http://abloz.com 假如设备链接层次分3层,第一层交换机d1下面连多个交换机rk1,rk2,rk3,rk4,. 每个交换机对应一个机架。 d1(rk1(hs11,hs12,),rk2(hs21,hs22,), rk3(hs31,hs32,),rk4(hs41,hs42,),) 可以用程序或脚本完成由host到设备的映射
周海汉?2013.7.24
http://abloz.com
假如设备链接层次分3层,第一层交换机d1下面连多个交换机rk1,rk2,rk3,rk4,…. 每个交换机对应一个机架。
d1(rk1(hs11,hs12,…),rk2(hs21,hs22,…), rk3(hs31,hs32,…),rk4(hs41,hs42,…),…)
可以用程序或脚本完成由host到设备的映射。比如,用python,生成一个topology.py:
然后在core-site.xml中配置
NetworkTopology names. Example: the script would take host.foo.bar as an
argument, and return /rack1 as the output.
python机架脚本:
[hadoop@hs11 conf]$ cat topology.py
#!/usr/bin/env python
”’
This script used by hadoop to determine network/rack topology. It
should be specified in hadoop-site.xml via topology.script.file.name
Property.
topology.script.file.name
/home/hadoop/hadoop-1.1.2/conf/topology.py
To generate dict:
for i in range(xx):
#print “\”hs%d\”:\”/rk%d/hs%d\”,”%(i,(i-1)/10,i)
print “\”hs%d\”:\”/rk%d\”,”%(i,(i-1)/10)
Andy 2013.7.23
”’
import sys
from string import join
DEFAULT_RACK = ‘/rk0′;
RACK_MAP = {
“hs11″:”/rk1″,
“hs12″:”/rk1″,
“hs13″:”/rk1″,
“hs14″:”/rk1″,
“hs15″:”/rk1″,
“hs16″:”/rk1″,
“hs17″:”/rk1″,
“hs18″:”/rk1″,
“hs19″:”/rk1″,
“hs20″:”/rk1″,
“hs21″:”/rk2″,
“hs22″:”/rk2″,
“hs23″:”/rk2″,
“hs24″:”/rk2″,
“hs25″:”/rk2″,
“hs26″:”/rk2″,
“hs27″:”/rk2″,
“hs28″:”/rk2″,
“hs29″:”/rk2″,
“hs30″:”/rk2″,
“hs31″:”/rk3″,
“hs32″:”/rk3″,
“hs33″:”/rk3″,
“hs34″:”/rk3″,
“hs35″:”/rk3″,
“hs36″:”/rk3″,
“hs37″:”/rk3″,
“hs38″:”/rk3″,
“hs39″:”/rk3″,
“hs40″:”/rk3″,
“hs41″:”/rk4″,
“hs42″:”/rk4″,
“hs43″:”/rk4″,
“hs44″:”/rk4″,
“hs45″:”/rk4″,
“hs46″:”/rk4″,
…
“10.10.20.11″:”/rk1″,
“10.10.20.12″:”/rk1″,
“10.10.20.13″:”/rk1″,
“10.10.20.14″:”/rk1″,
“10.10.20.15″:”/rk1″,
“10.10.20.16″:”/rk1″,
“10.10.20.17″:”/rk1″,
“10.10.20.18″:”/rk1″,
“10.10.20.19″:”/rk1″,
“10.10.20.20″:”/rk1″,
“10.10.20.21″:”/rk2″,
“10.10.20.22″:”/rk2″,
“10.10.20.23″:”/rk2″,
“10.10.20.24″:”/rk2″,
“10.10.20.25″:”/rk2″,
“10.10.20.26″:”/rk2″,
“10.10.20.27″:”/rk2″,
“10.10.20.28″:”/rk2″,
“10.10.20.29″:”/rk2″,
“10.10.20.30″:”/rk2″,
“10.10.20.31″:”/rk3″,
“10.10.20.32″:”/rk3″,
“10.10.20.33″:”/rk3″,
“10.10.20.34″:”/rk3″,
“10.10.20.35″:”/rk3″,
“10.10.20.36″:”/rk3″,
“10.10.20.37″:”/rk3″,
“10.10.20.38″:”/rk3″,
“10.10.20.39″:”/rk3″,
“10.10.20.40″:”/rk3″,
“10.10.20.41″:”/rk4″,
“10.10.20.42″:”/rk4″,
“10.10.20.43″:”/rk4″,
“10.10.20.44″:”/rk4″,
“10.10.20.45″:”/rk4″,
“10.10.20.46″:”/rk4″,
…
}
if len(sys.argv)==1:
print DEFAULT_RACK
else:
print join([RACK_MAP.get(i, DEFAULT_RACK) for i in sys.argv[1:]],” “)
原来这个程序我返回的是
“hs11″:”/rk1/hs11″,
结果执行mapreduce程序时报如下错误:
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there’s no reduce operator
Starting Job = job_201307241502_0003, Tracking URL = http://hs11:50030/jobdetails.jsp?jobid=job_201307241502_0003
Kill Command = /home/hadoop/hadoop-1.1.2/libexec/../bin/hadoop job? -kill job_201307241502_0003
Hadoop job information for Stage-1: number of mappers: 0; number of reducers: 0
2013-07-24 18:38:11,854 Stage-1 map = 100%,? reduce = 100%
Ended Job = job_201307241502_0003 with errors
Error during job, obtaining debugging information…
Job Tracking URL: http://hs11:50030/jobdetails.jsp?jobid=job_201307241502_0003
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.MapRedTask
MapReduce Jobs Launched:
Job 0:? HDFS Read: 0 HDFS Write: 0 FAIL
Total MapReduce CPU Time Spent: 0 msec
通过http://hs11:50030/jobdetails.jsp?jobid=job_201307241502_0002?可以看到:
Job initialization failed:
java.lang.NullPointerException
at?org.apache.hadoop.mapred.JobTracker.resolveAndAddToTopology(JobTracker.java:2751)
at?org.apache.hadoop.mapred.JobInProgress.createCache(JobInProgress.java:578)
at?org.apache.hadoop.mapred.JobInProgress.initTasks(JobInProgress.java:750)
at org.apache.hadoop.mapred.JobTracker.initJob(JobTracker.java:3775)
at?org.apache.hadoop.mapred.EagerTaskInitializationListener$InitJob.run(EagerTaskInitializationListener.java:90)
at?java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
at?java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
at java.lang.Thread.run(Thread.java:662)
原来系统在配置机架敏感时,并不需要在脚本中返回设备ns或hostname,系统会自动添加。改为上面的topology.py后,系统执行正确。
相关博文:
- hadoop 打印配置变量
- hadoop 中的 ClassNotFoundException
- hadoop ubuntu集群安装
原文地址:hadoop 配置机架感知, 感谢原作者分享。

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

随着互联网的不断发展和普及,Web应用程序已成为人们日常生活中必不可少的一部分,这也决定了Web应用程序的安全问题非常重要。在Web应用程序中,Cookie被广泛使用来实现用户身份认证等功能,然而Cookie也存在着安全风险,因此在配置Nginx时,必须设定适当的Cookie安全策略,以保证Cookie的安全性。下面是一些在Nginx中配置Cookie安全策

如何配置MySQL连接池的最大连接数?MySQL是一个开源的关系型数据库管理系统,被广泛应用于各种领域的数据存储与管理。在使用MySQL时,我们常常需要使用连接池来管理数据库连接,以提高性能和资源利用率。连接池是一种维护和管理数据库连接的技术,它能够在需要时提供数据库连接,并在不需要时回收连接,从而减少了连接的重复创建和销毁。而连接池的最大连接数则是连接池所

Nginx错误页面配置,优雅处理网站故障在现代互联网时代,一个高度稳定和可靠的网站是任何企业或个人追求的目标。然而,由于各种原因,网站可能会经历故障或错误,这可能是由于网络问题、服务器问题或应用程序错误等。为了提供更好的用户体验和优雅地处理任何可能发生的错误,Nginx作为一个强大的Web服务器软件,不仅能够提供高性能的服务,还能够灵活地配置错误页面。在Ng

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

在Linux服务器上配置防火墙非常重要,它可以有效地保护服务器免受恶意攻击。在Ubuntu操作系统上,我们可以使用UFW防火墙来保护服务器的安全。在本文中,我们将介绍如何使用宝塔面板配置UFW防火墙。第一步:安装宝塔面板首先,我们需要在Ubuntu上安装宝塔面板。您可以在宝塔官网免费下载宝塔面板的安装包,然后在命令行中运行以下命令来安装宝塔面板:$wget

随着云计算、大数据和物联网等技术的日益普及,虚拟化技术成为了当今IT领域的热门话题。虚拟化是通过将一台物理主机划分为多个独立的虚拟机,实现资源的共享和管理的方法。虚拟网络是虚拟化的其中一个重要组成部分,能够满足不同应用之间的网络隔离和互动需求。在本文中,我们将介绍如何使用Linux进行虚拟网络配置。一、Linux虚拟网络的概述在物理网络中,网卡是连接网络设备

IntelTXT(TrustedExecutionTechnology,可信执行技术)是一种硬件帮助保护系统安全的技术。它通过使用硬件测量模块(TPM)来确保系统启动过程中的完整性,并且可以防止恶意软件攻击。在本文中,我们将讨论IntelTXT的安装和配置步骤,帮助你更好地保护你的系统安全。第一步:检查硬件要求安装IntelTXT前,需要先检查计算


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!
