By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM. It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one
By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM.
It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one of my PHP driver teammates and a renowned OpenStreetMap aficionado, recently blogged about importing OSM data into MongoDB as GeoJSON objects. A few days later, GitHub added support for rendering .geojson
files in repositories, using a combination of Leaflet.js, MapBox, and OpenStreetMap data. Coincidentally, I visited a local CloudCamp meetup last week to present on geospatial data, and for the past two weeks I’ve been working on adding support for MongoDB 2.4’s geospatial query operators to Doctrine MongoDB.
Doctrine MongoDB is an abstraction for the PHP driver that provides a fluent query builder API among other useful features. It’s used internally by Doctrine MongoDB ODM, but is completely usable on its own. One of the challenges in developing the library has been supporting multiple versions of MongoDB and the PHP driver. The introduction of read preferences last year is one such example. We wanted to still allow users to set slaveOk
bits for older server and driver versions, but allow read preferences to apply for newer versions, all without breaking our API and abiding by semantic versioning. Now, the setSlaveOkay()
method in Doctrine MongoDB will invoke setReadPreference()
if it exists in the driver, and fall back to the deprecated setSlaveOkay()
driver method otherwise.
Query Builder API
Before diving into the geospatial changes for Doctrine MongoDB, let’s take a quick look at the query builder API. Suppose we had a collection, test.places
, with some OpenStreetMap annotations (key=value
strings) stored in a tags
array and a loc
field containing longitude/latitude coordinates in MongoDB’s legacy point format (a float tuple) for a 2d
index. Doctrine’s API allows queries to be constructed like so:
$connection = new \Doctrine\MongoDB\Connection(); $collection = $connection->selectCollection('test', 'places'); $qb = $collection->createQueryBuilder() ->field('loc') ->near(-73.987415, 40.757113) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant'); $cursor = $qb->getQuery()->execute();
This above example executes the following query:
{ "loc": { "$near": [-73.987415, 40.757113], "$maxDistance": 0.00899928 }, "tags": "amenity=restaurant" }
This simple query will return restaurants within half a kilometer of 10gen’s NYC office at 229 West 43rd Street. If only it was so easy to find good restaurants near Times Square!
Supporting New and Old Geospatial Queries
When the new 2dsphere
index type was introduced in MongoDB 2.4, operators such $near
and $geoWithin
were changed to accept GeoJSON geometry objects in addition to their legacy point and shape arguments. $near
was particularly problematic because of its optional $maxDistance
argument. As shown above, $maxDistance
previously sat alongside $near
and was measured in radians. It now sits within $near
and is measured in meters. Using a 2dsphere
index and GeoJSON points, the same query takes on a whole new shape:
{ "loc": { "$near": { "$geometry": { "type": "Point", "coordinates" [-73.987415, 40.757113] }, "$maxDistance": 500 } }, "tags": "amenity=restaurant" }
This posed a hurdle for Doctrine MongoDB’s query builder, because we wanted to support 2dsphere
queries without drastically changing the API. Unfortunately, there was no obvious way for near()
to discern whether a pair of floats denoted a legacy or GeoJSON point, or whether a number signified radians or meters in the case of maxDistance()
. I also anticipated we might run into a similar quandry for the $geoWithin
builder method, which accepts an array of point coordinates.
Method overloading seemed preferable to creating separate builder methods or introducing a new “mode” parameter to handle 2dsphere
queries. Although PHP has no language-level support for overloading, it is commonly implemented by inspecting an argument’s type at runtime. In our case, this would necessitate having classes for GeoJSON geometries (e.g. Point, LineString, Polygon), which we could differentiate from the legacy geometry arrays.
Introducing a GeoJSON Library for PHP
A cursory search for GeoJSON PHP libraries turned up php-geojson, from the MapFish project, and geoPHP. I was pleased to see that geoPHP was available via Composer (PHP’s de facto package manager), but neither library implemented the GeoJSON spec in its entirety. This seemed like a ripe opportunity to create such a library, and so geojson was born a few days later.
At the time of this writing, 2dsphere
support for Doctrine’s query builder is still being developed; however, I envision it will take the following form when complete:
use GeoJson\Geometry\Point; // ... $qb = $collection->createQueryBuilder() ->field('loc') ->near(new Point([-73.987415, 40.757113])) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant');
All of the GeoJson classes implement JsonSerializable, one of the newer interfaces introduced in PHP 5.4, which will allow Doctrine to prepare them for MongoDB queries with a single method call. One clear benefit over the legacy geometry arrays is that the GeoJson library performs its own validation. When a Polygon is passed to geoWithin()
, Doctrine won’t have to worry about whether all of its rings are closed LineStrings; the library would catch such an error in the constructor. This helps achieve a separation of concerns, which in turn increases the maintainability of both libraries.
I look forward to finishing up 2dsphere
support for Doctrine MongoDB in the coming weeks. In the meantime, if you happen to fall in the fabled demographic of PHP developers in need of a full GeoJSON implementation, please give geojson a look and share some feedback.
原文地址:2dsphere, GeoJSON, and Doctrine MongoDB, 感谢原作者分享。

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.

MySQL 쿼리 성능이 좋지 않은 주된 이유는 인덱스 사용, 쿼리 최적화에 의한 잘못된 실행 계획 선택, 불합리한 테이블 디자인, 과도한 데이터 볼륨 및 잠금 경쟁이 포함됩니다. 1. 색인이 느리게 쿼리를 일으키지 않으며 인덱스를 추가하면 성능이 크게 향상 될 수 있습니다. 2. 설명 명령을 사용하여 쿼리 계획을 분석하고 Optimizer 오류를 찾으십시오. 3. 테이블 구조를 재구성하고 결합 조건을 최적화하면 테이블 설계 문제가 향상 될 수 있습니다. 4. 데이터 볼륨이 크면 분할 및 테이블 디비전 전략이 채택됩니다. 5. 높은 동시성 환경에서 거래 및 잠금 전략을 최적화하면 잠금 경쟁이 줄어들 수 있습니다.

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전
