>  기사  >  데이터 베이스  >  让Mahout KMeans聚类分析运行在Hadoop上

让Mahout KMeans聚类分析运行在Hadoop上

WBOY
WBOY원래의
2016-06-07 16:30:361884검색

上一篇文章“Mahout与聚类分析”介绍了如何使用Mahout进行聚类分析的步骤,并且结合实例使用K-Means对微博名人共同关注数据进行了共被关注聚类分析。Mahout运行有本地运行和Hadoop运行两种模式,本地运行是指在用户本地的单机模式下运行,就像运行其他普通的

上一篇文章“Mahout与聚类分析”介绍了如何使用Mahout进行聚类分析的步骤,并且结合实例使用K-Means对微博名人共同关注数据进行了共被关注聚类分析。Mahout运行有本地运行和Hadoop运行两种模式,本地运行是指在用户本地的单机模式下运行,就像运行其他普通的程序一样,但是这样这样就不能最大限度的发挥出Mahout的优势,在本文中我们介绍如何让我们的Mahout聚类分析程序在Hahoop集群上运行(在实际操作中笔者使用的伪分布Hadoop,而不是真正的Hadoop集群)。

配置Mahout运行环境

Mahout运行配置可以在$MAHOUT_HOME/bin/mahout里面进行设置,实际上$MAHOUT_HOME/bin/mahout就是Mahout在命令行的启动脚本,这一点与Hadoop相似,但也又不同,Hadoop在$HADOOP_HOME\conf下面还提供了专门的hadoop-env.sh文件进行相关环境变量的配置,而Mahout在conf目录下没有提供这样的文件。

MAHOUT_LOCAL与HADOOP_CONF_DIR

以上的连个参数是控制Mahout是在本地运行还是在Hadoop上运行的关键。

$MAHOUT_HOME/bin/mahout文件指出,只要设置MAHOUT_LOCAL的值为一个非空(not empty string)值,则不管用户有没有设置HADOOP_CONF_DIR和HADOOP_HOME这两个参数,Mahout都以本地模式运行;换句话说,如果要想Mahout运行在Hadoop上,则MAHOUT_LOCAL必须为空。

HADOOP_CONF_DIR参数指定Mahout运行Hadoop模式时使用的Hadoop配置信息,这个文件目录一般指向的是$HADOOP_HOME目录下的conf目录。

除此之外,我们还应该设置JAVA_HOME或者MAHOUT_JAVA_HOME变量,以及必须将Hadoop的执行文件加入到PATH中。

综上所述:

1. 添加JAVA_HOME变量,可以在直接设置在$MAHOUT_HOME/bin/mahout中,也可以在user/bash profile里面设置(如./bashrc)

2. 设置MAHOUT_HOME并添加Hadoop的执行文件到PATH中

两个步骤在~/.bashrc的设置如下:

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386
#export HADOOP_HOME=/home/yoyzhou/workspace/hadoop-1.1.2
export MAHOUT_HOME=/home/yoyzhou/workspace/mahout-0.7
export PATH=$PATH:/home/yoyzhou/workspace/hadoop-1.1.2/bin:$MAHOUT_HOME/bin

编辑完~/.bashrc,重启Terminal即可生效。

3. 编辑$MAHOUT_HOME/bin/mahout,将HADOOP_CONF_DIR设置为$HADOOP_HOME\conf

HADOOP_CONF_DIR=/home/yoyzhou/workspace/hadoop-1.1.2/conf

读者可以将相关的Hadoop和Mahout主目录修改自己系统上面的目录地址,设置好之后重启Terminal,在命令行输入mahout,如果你看到如下的信息,就说明Mahout的Hadoop运行模式已经配置好了。

MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath. 
Running on hadoop...

要想使用本地模式运行,只需在$MAHOUT_HOME/bin/mahout添加一条设置MAHOUT_LOCAL为非空的语句即可。

Mahout命令行

Mahout为相关的数据挖掘算法提供了相应的命令行入口,同时提供了一些数据分析处理的用到的工具集。这些命令可以通过在终端输入mahout获得。以下显示了输入mahout的部分信息:

....
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  canopy: : Canopy clustering
  cat: : Print a file or resource as the logistic regression models would see it
  cleansvd: : Cleanup and verification of SVD output
  clusterdump: : Dump cluster output to text
  ....
  fkmeans: : Fuzzy K-means clustering
  fpg: : Frequent Pattern Growth
  hmmpredict: : Generate random sequence of observations by given HMM
  itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  kmeans: : K-means clustering
....

Mahout kmeans

在上一篇文章,我们通过调用KMeansDriver.run()方法从Mahout程序中直接启动KMeans算法,这种方式对于在本地调试程序非常有用,但是在真实项目中,无论是使用Hadoop模式运行,还是本地运行,从命令行运行Mahout的相关算法更加合适,这样的好处是我们只需要给Mahout提供符合相应算法要求的输入数据,即可以利用Mahout分布式处理的优势。比如在本例中,使用kmeans算法,只需要事先将数据处理成Mahout kmeans算法要求的输入数据,然后在命令行调用mahout kmeans [options]即可。

在命令行输入不带任何参数的mahout kmeans,Mahout将为你列出在命令行使用kmeans算法的使用方法。

Usage:                                                                          
 [--input  --output  --distanceMeasure          
--clusters  --numClusters  --convergenceDelta    
--maxIter  --overwrite --clustering --method                   
--outlierThreshold  --help --tempDir  --startPhase   
 --endPhase ]                                             
--clusters (-c) clusters    The input centroids, as Vectors.  Must be a         
	                        SequenceFile of Writable, Cluster/Canopy.  If k is  
	                        also specified, then a random set of vectors will   
	                        be selected and written out to this path first 

相关的参数我们已经在上篇文章中提到过。

具体的步骤如下:

1. 将数据处理为Mahout向量(Vector)的形式
2. 将Mahout向量转化为Hadoop SequenceFile
3. 创建K个初始质心\[可选\]
4. 将Mahout向量的SequenceFile复制到HDFS上
5. 运行`mahout kmeans [options]`

下面的命令显示使用CosineDistanceMeasure对data/vectors目录下Mahout向量数据进行kmeans聚类分析,输出结果保存在output目录下。

mahout kmeans -i data/vectors -o output -c data/clusters \
-dm org.apache.mahout.common.distance.CosineDistanceMeasure \
-x 10 -ow -cd 0.001 -cl

更加详细的命令行参数可以在Mahout wiki k-means-commandline上查找到。

总结

本文首先介绍了如何配置Mahout的Hadoop的运行环境,然后介绍如何使用mahout kmeans命令行将聚类分析运行在Hadoop上。

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.