Discuss on Hacker News MongoDB 2.5.0 (an unstable dev build) has a? new implementation of the “Matcher” . The old Matcher is the bit of code in Mongo that takes a query and decides if a document matches a query expression. It also has to
Discuss on Hacker News
MongoDB 2.5.0 (an unstable dev build) has a?new implementation of the “Matcher”. The old Matcher is the bit of code in Mongo that takes a query and decides if a document matches a query expression. It also has to understand indexes so that it can do things like create a subsets of queries suitable for index covering. However, the structure of the Matcher code hasn’t changed significantly in more than four years and until this release, it lacked the ability to be easily extended. It was also structured in such a way that its knowledge could not be reused for query optimization. It was clearly ready for a rewrite.
The “New Matcher” in 2.5.0 is a total rewrite. It contains three separate pieces: an abstract syntax tree (hereafter ‘AST’) for expression match expressions, a parser from BSON into said AST, and a Matcher API layer that simulates the old Matcher interface while using all new internals. This new version is much easier to extend, easier to reason about, and will allow us to use the same structure for matching as for query analysis and rewriting.
This matcher rewrite is part of a larger project to restructure query execution, to optimize them, and to lay the groundwork for more advanced queries in the future. One planned optimization is index intersection. For example, if you have an index on each of ‘a’ and ‘b’ attributes, we want a query of the form?{ a : 5 , b : 6 }?to do an index intersection of the two indexes rather than just use one index and discard the documents from that index that don’t match. Index intersection would also be suitable for merging geo-spatial, text and regular indexes together in fun and interesting ways (i.e. a query to return all the users in a 3.5 mile radius of a location with a greater than #x# reputation who are RSVP’ed ‘yes’ for an event).
A good example of an extension we’d like to enable is self referential queries, such as finding all documents where a = b + c. (This would be written?{ a : { $sum : [ “$b” , “$c” ] } }). With the new Matcher, such queries are easy to implement as a native part of the language.
Now that the Matcher re-write is ready for testing, we’d love people to help test it by trying out MongoDB 2.5.0. (Release Notes)
Code
- AST Root
- Parser Root
By Eliot Horowitz, 10gen CTO, MongoDB core contributor. You can find the original post on his personal blog.?
原文地址:MongoDB's New Matcher, 感谢原作者分享。

mongodb php扩展没有的解决办法:1、在linux中执行“$ sudo pecl install mongo”命令来安装MongoDB的PHP扩展驱动;2、在window中,下载php mongodb驱动二进制包,然后在“php.ini”文件中配置“extension=php_mongo.dll”即可。

Redis和MongoDB都是流行的开源NoSQL数据库,但它们的设计理念和使用场景有所不同。本文将重点介绍Redis和MongoDB的区别和使用场景。Redis和MongoDB简介Redis是一个高性能的数据存储系统,常被用作缓存和消息中间件。Redis以内存为主要存储介质,但它也支持将数据持久化到磁盘上。Redis是一款键值数据库,它支持多种数据结构(例

MongoDB是一种高性能、开源、文档型的NoSQL数据库,被广泛应用于Web应用、大数据以及云计算领域。而Go语言则是一种快速、开发效率高、代码可维护性强的编程语言。本文将为您完整介绍如何在Go语言中使用MongoDB。一、安装MongoDB在使用MongoDB之前,需要先在您的系统中安装MongoDB。在Linux系统下,可以通过如下命令安装:sudo

php7.0安装mongo扩展的方法:1、创建mongodb用户组和用户;2、下载mongodb源码包,并将源码包放到“/usr/local/src/”目录下;3、进入“src/”目录;4、解压源码包;5、创建mongodb文件目录;6、将文件复制到“mongodb/”目录;7、创建mongodb配置文件并修改配置即可。

MongoDB作为一款流行的NoSQL数据库,已经被广泛应用于各种大型Web应用和企业级应用中。而PHP语言也作为一种流行的Web编程语言,与MongoDB的结合也变得越来越重要。在本文中,我们将会学习如何使用PHP语言操作MongoDB数据库进行增删查改的操作。

自定义Appender非常简单,继承一下AppenderBase类即可。可以看到有个AppenderBase,有个UnsynchronizedAppenderBase,还有个AsyncAppenderBase继承了UnsynchronizedAppenderBase。从名字就能看出来区别,异步的、普通的、不加锁的。我们定义一个MongoDBAppender继承UnsynchronizedAppenderBasepublicclassMongoDBAppenderextendsUnsynchron

在现代企业应用程序开发中,需要处理海量数据和高并发的访问请求。为了满足这些需求,开发人员需要使用高性能的数据库系统,以确保系统的稳定性和可扩展性。本文将介绍如何使用Swoole和MongoDB构建高性能的文档数据库系统。Swoole是一个基于PHP语言开发的异步网络通信框架,它能够大大提高PHP应用程序的性能和并发能力。MongoDB是一种流行的文档数据库,

Python服务器编程:MongoDB数据库使用攻略MongoDB是一种NoSQL数据库,相比传统的关系型数据库,在某些场景下具有明显的优势。本文将介绍如何在Python服务器端使用MongoDB数据库,包括安装、连接、基本操作和查询优化等方面。一、安装MongoDB数据库MongoDB官网提供了各种操作系统下的安装包,这里我们选择在Ubuntu上安装。打开


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

드림위버 CS6
시각적 웹 개발 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

뜨거운 주제



