topicmodel-LDA1

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB원래의
2016-06-07 16:12:521148검색

step1 : install gensim step 2 :Corpora and Vector Spaces 将用字符串表示的文档转换为用id表示的文档向量: documents = [Human machine interface for lab abc computer applications, A survey of user opinion of computer system response time, The E

step1 : install gensim

step 2 :Corpora and Vector Spaces

将用字符串表示的文档转换为用id表示的文档向量:

documents = ["Human machine interface for lab abc computer applications",
    "A survey of user opinion of computer system response time",
    "The EPS user interface management system",
    "System and human system engineering testing of EPS",
    "Relation of user perceived response time to error measurement",
    "The generation of random binary unordered trees",
    "The intersection graph of paths in trees",
    "Graph minors IV Widths of trees and well quasi ordering",
    "Graph minors A survey"]
"""
#use StemmedCountVectorizer to get stemmed without stop words corpus
Vectorizer = StemmedCountVectorizer
# Vectorizer = CountVectorizer
vectorizer = Vectorizer(stop_words='english')
vectorizer.fit_transform(documents)
texts = vectorizer.get_feature_names()
# print(texts)
"""
texts = [doc.lower().split() for doc in documents]
# print(texts)
dict = corpora.Dictionary(texts)    #自建词典
# print dict, dict.t【本文来自鸿网互联 (http://www.68idc.cn)】oken2id
#通过dict将用字符串表示的文档转换为用id表示的文档向量
corpus = [dict.doc2bow(text) for text in texts]
print(corpus)
성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.