OLTP和OLAP 传统的数据库系统都是OLTP,只能提供数据原始的操作。不支持分析工作。 OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等, OLAP系统:数据分析与决策服务,组织不同式数据,满足不同用户需求。 区
OLTP和OLAP
传统的数据库系统都是OLTP,只能提供数据原始的操作。不支持分析工作。
OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等,
OLAP系统:数据分析与决策服务,组织不同格式数据,满足不同用户需求。
区别:
面向性。OLTP面向顾客,就是操作员,如超市收银员,银行柜台人员。OLAP面向市场,用于数据分析,分析人员包括数据分析员,做出决策的业务经理,或者策略制定部分。
数据内容:OLTP当前数据。OLAP历史数据的汇总与聚集。
数据库设计:OLTP用ER模型和面向应用数据库。OLAP 用星型或雪花模型,面向主题数据库设计。
还有访问模式:操作事务与只读的分析计算的区别。
等等
多维数据模型:
数据立方体cube:
给定维度的每个子集产生一个cuboid(称为方体)。这样可以在不同粒度上的汇总级别或分组(group by),来显示数据,整体上方体的格成为cube。
最低层汇总的方体称为基本方体(basecuboid)。出现某一个维度上的汇总后,则为非基本方体。
汇总到最高层的数据称为顶点方体(apexcuboid),如0-d方体,that’s to say,所有维度汇总到一起只剩一个cuboid,不能再汇总了。
顶点方体是最高泛化的方体。基本方体是最低特殊化的方体。
粗细粒度是不同程度上的汇总,涉及操作:
上卷(roll up),供应商称之为上钻drillup,沿着维度的概念分层向上
下钻(drill down)沿着维度的概念分层向下,需找更细粒度的数据。
切片:固定某一维度的取值,抽取这一维度下的子集。
切块:由多个维度上选择多个取值,抽取其所映射的子立方体。
旋转rotate: 也叫pivot数轴变换,简单说,二维表中的行列转置。到三维以上复杂,不同数轴之间的位置变换。说的高大上叫数据的视图角度转变
概念分层:低层概念(如城市)映射到更高的层次概念(如国家)。从低到高叫泛化(generalize),从高到低叫特殊化(specialize)。
模式分层(schema hierarchy)概念分层为数据库模式中属性的全序或偏序。
集合分组分层(set-grouping hierarchy)给定维度的属性值的离散化或分组。如年龄age属性离散化为young、mid、old三个子集,分组group by sex的男女子集。
数据立方体的实现:
使用数据仓库的模型是多维模型,目前经常的有:
星型模型:一个大而全,且无冗余的事实表(fact);以及不同分析维度上的维度表(dimension)。维度表围绕事实表,通过每个维度自身的dimension key(所有可能范围内的取值)关联。
雪花模型:星型模型的进一步细化,即将其中包含多个值的维度表进行规范化的(就是将维度表包含的某个值提取出来,作为新的dimension表),以便减少冗余。
这样把数据进一步分解到附加表中,易于维护,省空间(防止维度灾难),但查询时需要更多关联操作,降低时效性。
事实星座模型(fact constellation)or 星系模式(galaxy schema):多个fact tableshare all dimesioms(共享维度表)。
比如我的设计的data warehouse。Workbench
Cube定义
Dimension定义
一般的data warehouse 都是用fact constellation。
指标Index
度量measure
维度灾难(curse of dimensionality),当维度过多(特征空间非常复杂),那么维度之间的关联计算就变得非常多,而维度概念分层会加重灾难。反应在cube中,就是不同维度的计算就会产生巨大的数据,就是预计算cube中所有的方体(子cube),存储空间是爆炸似增长。N维会有2n个子cube,加上概念分层Li,则方体总数
预计算:1不物化(no materialization)2全物化(full materialization)3部分物化(partial materialization)
OLTP和OLAP
OLTP系统::执行联机事务和查询处理。一般超市进销存系统,功能:注册,记账,库存和销售记录等等,
OLAP系统:数据分析与决策服务,组织不同格式数据,满足不同用户需求。
区别:
面向性。OLTP面向顾客,就是操作员,如超市收银员,银行柜台人员。OLAP面向市场,用于数据分析,分析人员包括数据分析员,做出决策的业务经理,或者策略制定部分。
数据内容:OLTP当前数据。OLAP历史数据的汇总与聚集。
数据库设计:OLTP用ER模型和面向应用数据库。OLAP 用星型或雪花模型,面向主题数据库设计。
还有访问模式:操作事务与只读的分析计算的区别。
等等
多维数据模型:
数据立方体cube:
给定维度的每个子集产生一个cuboid(称为方体)。这样可以在不同粒度上的汇总级别或分组(group by),来显示数据,整体上方体的格成为cube。
最低层汇总的方体称为基本方体(basecuboid)。出现某一个维度上的汇总后,则为非基本方体。
汇总到最高层的数据称为顶点方体(apexcuboid),如0-d方体,that’s to say,所有维度汇总到一起只剩一个cuboid,不能再汇总了。
顶点方体是最高泛化的方体。基本方体是最低特殊化的方体。
粗细粒度是不同程度上的汇总,涉及操作:
上卷(roll up),供应商称之为上钻drillup,沿着维度的概念分层向上
下钻(drill down)沿着维度的概念分层向下,需找更细粒度的数据。
切片:固定某一维度的取值,抽取这一维度下的子集。
切块:由多个维度上选择多个取值,抽取其所映射的子立方体。
旋转rotate: 也叫pivot数轴变换,简单说,二维表中的行列转置。到三维以上复杂,不同数轴之间的位置变换。说的高大上叫数据的视图角度转变
概念分层:低层概念(如城市)映射到更高的层次概念(如国家)。从低到高叫泛化(generalize),从高到低叫特殊化(specialize)。
模式分层(schema hierarchy)概念分层为数据库模式中属性的全序或偏序。
集合分组分层(set-grouping hierarchy)给定维度的属性值的离散化或分组。如年龄age属性离散化为young、mid、old三个子集,分组group by sex的男女子集。
数据立方体的实现:
使用数据仓库的模型是多维模型,目前经常的有:
星型模型:一个大而全,且无冗余的事实表(fact);以及不同分析维度上的维度表(dimension)。维度表围绕事实表,通过每个维度自身的dimension key(所有可能范围内的取值)关联。
雪花模型:星型模型的进一步细化,即将其中包含多个值的维度表进行规范化的(就是将维度表包含的某个值提取出来,作为新的dimension表),以便减少冗余。
这样把数据进一步分解到附加表中,易于维护,省空间(防止维度灾难),但查询时需要更多关联操作,降低时效性。
事实星座模型(fact constellation)or 星系模式(galaxy schema):多个fact tableshare all dimesioms(共享维度表)。
比如我的设计的data warehouse。Workbench
Cube定义
Dimension定义
一般的data warehouse 都是用fact constellation。
指标Index
度量measure
维度灾难(curse of dimensionality),当维度过多(特征空间非常复杂),那么维度之间的关联计算就变得非常多,而维度概念分层会加重灾难。反应在cube中,就是不同维度的计算就会产生巨大的数据,就是预计算cube中所有的方体(子cube),存储空间是爆炸似增长。N维会有2n个子cube,加上概念分层Li,则方体总数
预计算:1不物化(no materialization)2全物化(full materialization)3部分物化(partial materialization)

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.

MySQL 쿼리 성능이 좋지 않은 주된 이유는 인덱스 사용, 쿼리 최적화에 의한 잘못된 실행 계획 선택, 불합리한 테이블 디자인, 과도한 데이터 볼륨 및 잠금 경쟁이 포함됩니다. 1. 색인이 느리게 쿼리를 일으키지 않으며 인덱스를 추가하면 성능이 크게 향상 될 수 있습니다. 2. 설명 명령을 사용하여 쿼리 계획을 분석하고 Optimizer 오류를 찾으십시오. 3. 테이블 구조를 재구성하고 결합 조건을 최적화하면 테이블 설계 문제가 향상 될 수 있습니다. 4. 데이터 볼륨이 크면 분할 및 테이블 디비전 전략이 채택됩니다. 5. 높은 동시성 환경에서 거래 및 잠금 전략을 최적화하면 잠금 경쟁이 줄어들 수 있습니다.

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
