本篇接着上面的四篇继续讲述在window平台下mongodb的分片集群搭建。在分片集群中也照样可以创建索引,创建索引的方式与在单独数据库中创建索引的方式一样。因此这不再多说。本篇主要聚焦在分片键的选取问题上。 分片键通俗来说就是分割海量数据的标记符。 如
本篇接着上面的四篇继续讲述在window平台下mongodb的分片集群搭建。在分片集群中也照样可以创建索引,创建索引的方式与在单独数据库中创建索引的方式一样。因此这不再多说。本篇主要聚焦在分片键的选取问题上。
分片键通俗来说就是分割海量数据的标记符。 如果更高效的划分海量数据往往依赖于分片键的选择。 分片键选得不好,应用程序就无法利用分片集群所提供的诸多优势。在这种情况下,查询和插入得系能都回显著下降。
一、低效的分片键
1.1 分布差
BSON对象ID是每个mongodb文档的默认主键。所有的对象ID最重要的组成部分是时间戳,也就是说对象ID是升序的,遗憾的是升序对于分片键来说是很糟糕的。由于分片是基于范围的。使用升序的分片键后,所有最近插入的文档会落在某个很小的连续范围内。如果想让插入负载分不到多个分片上,就不能使用升序分片键,应需某些随机性更强发的的东西。
1.2 缺乏局部性
升序分片键由明确的方向,完全随机的分片键根部没有方向。前者无法分散插入,而后者则可能将插入分散太慢。假设分片集合中每个文档都包含一个MD5,而MD5字段就是分片键。因为MD5随着文档的不同而进行变化。所有该分片键能确保插入的文档均匀分布在集群的分片上。但是有个问题,对于每个分片的MD5字段索引进行的插入过程中,索引中每个虚拟内存分页都有可能被访问到。这就意外着有可能所有的索引和数据都装在内存中。从而超出了物理内存。3. 无法拆分的块
随机分片键和升序分片键都不好用,那么就尝试一下粗粒度分片键。举个例子,例如用户Id上传了100张照片,那么分片键就是用户ID,第一原因对于每张照片来说具有随机性,同时可以通过局部性引用来提升效率。但有个问题就是当用户ID上传的照片太大时候,以至于不得不分块。而系统又不能把一个用户的照片拆分成多个快。二、理想的分片键
通过上面分析,理想的分片键应该满足:1. 将插入数据均匀分布到各个分片上 2.保证crud操作能够利用局部性 3. 有足够的粒度进行块划分
举个例子:创建一个网站分析系统,一个不错的数据模型就是每个网页每月保存一个文档,随后在那个文档中保持该月每天的数据,每次访问某个页面增加一些计数器字段。下面是于分片键有关的实例分析文档:
{ _id: objectId("34535353245eraf32223sdarwe") domin:"org.mongod" url:"download" perid:"2011-12" }
最简单的分片就是包含每个网页的域名,随后是url{domain:1, url:1}所有来自指定域的页面通常都落在一个分片上,但是一些特殊的域拥有大量页面,在必要时候仍会被拆分到分片上。
备注:本篇内容大多引自《MongoDB in action》 Kyle Banker著

MySQL 데이터베이스를 업그레이드하는 단계에는 다음이 포함됩니다. 1. 데이터베이스 백업, 2. 현재 MySQL 서비스 중지, 3. 새 버전의 MySQL 설치, 4. 새 버전의 MySQL 서비스 시작, 5. 데이터베이스 복구. 업그레이드 프로세스 중에 호환성 문제가 필요하며 Perconatoolkit과 같은 고급 도구를 테스트 및 최적화에 사용할 수 있습니다.

MySQL 백업 정책에는 논리 백업, 물리적 백업, 증분 백업, 복제 기반 백업 및 클라우드 백업이 포함됩니다. 1. 논리 백업은 MySQLDump를 사용하여 데이터베이스 구조 및 데이터를 내보내며 소규모 데이터베이스 및 버전 마이그레이션에 적합합니다. 2. 물리적 백업은 데이터 파일을 복사하여 빠르고 포괄적이지만 데이터베이스 일관성이 필요합니다. 3. 증분 백업은 이진 로깅을 사용하여 변경 사항을 기록합니다. 이는 큰 데이터베이스에 적합합니다. 4. 복제 기반 백업은 서버에서 백업하여 생산 시스템에 미치는 영향을 줄입니다. 5. AmazonRDS와 같은 클라우드 백업은 자동화 솔루션을 제공하지만 비용과 제어를 고려해야합니다. 정책을 선택할 때 데이터베이스 크기, 가동 중지 시간 허용 오차, 복구 시간 및 복구 지점 목표를 고려해야합니다.

mysqlclusteringenhancesdatabaserobustness andscalabilitydaturedingdataacrossmultiplenodes.itusesthendbenginefordatareplicationandfaulttolerance, highavailability를 보장합니다

MySQL에서 데이터베이스 스키마 설계 최적화는 다음 단계를 통해 성능을 향상시킬 수 있습니다. 1. 인덱스 최적화 : 공통 쿼리 열에서 인덱스 생성, 쿼리의 오버 헤드 균형 및 업데이트 삽입. 2. 표 구조 최적화 : 정규화 또는 정상화를 통한 데이터 중복성을 줄이고 액세스 효율을 향상시킵니다. 3. 데이터 유형 선택 : 스토리지 공간을 줄이기 위해 Varchar 대신 Int와 같은 적절한 데이터 유형을 사용하십시오. 4. 분할 및 하위 테이블 : 대량 데이터 볼륨의 경우 파티션 및 하위 테이블을 사용하여 데이터를 분산시켜 쿼리 및 유지 보수 효율성을 향상시킵니다.

tooptimizemysqlperformance, followthesesteps : 1) 구현 properIndexingToSpeedUpqueries, 2) useExplaintoAnalyzeanDoptimizeQueryPerformance, 3) AdvertServerConfigUrationSettingstingslikeInnodb_buffer_pool_sizeandmax_connections, 4) uspartOflEtOflEtOflestoI

MySQL 기능은 데이터 처리 및 계산에 사용될 수 있습니다. 1. 기본 사용에는 문자열 처리, 날짜 계산 및 수학 연산이 포함됩니다. 2. 고급 사용에는 복잡한 작업을 구현하기 위해 여러 기능을 결합하는 것이 포함됩니다. 3. 성능 최적화를 위해서는 WHERE 절에서 기능 사용 및 GroupBy 및 임시 테이블 사용을 피해야합니다.

MySQL에 데이터 삽입을위한 효율적인 방법은 다음과 같습니다. 1. InsertInto 사용 ... 값 구문 사용 ... 값 구문, 2. 트랜잭션 처리 사용, 3. 트랜잭션 처리 사용, 4. 배치 크기 조정, 5. 인덱스 비활성화, 6. Insertignore 또는 Insert ... ondupliceKeyUpdate를 사용하여 데이터베이스 작동 효율성을 크게 향상시킬 수 있습니다.

MySQL에서는 altertabletable_nameaddcolumnnew_columnvarchar (255) 이후에 필드를 추가하여 altertabletable_namedropcolumncolumn_to_drop을 사용하여 필드를 삭제합니다. 필드를 추가 할 때는 쿼리 성능 및 데이터 구조를 최적화하기위한 위치를 지정해야합니다. 필드를 삭제하기 전에 작업이 돌이킬 수 없는지 확인해야합니다. 온라인 DDL, 백업 데이터, 테스트 환경 및 저하 기간을 사용하여 테이블 구조 수정은 성능 최적화 및 모범 사례입니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기
