在Oracle运维领域,两个围绕索引的概念一直在网络上被讨论,一个是Index定期重构的必要性,另一个对Rebuild和Rebuild Online的讨
在Oracle运维领域,两个围绕索引的概念一直在网络上被讨论,一个是Index定期重构的必要性,另一个对Rebuild和Rebuild Online的讨论。前者很多前辈在各种场合,包括Oracle MOS,都有了比较深刻的讨论。
对后者的讨论主要是集中两个方面,即:
本篇主要从执行计划和跟踪执行两个角度,分析两种rebuild索引的特点。
1、环境介绍
笔者选择Oracle 11gR2进行测试,具体版本为11.2.0.4。
SQL> select * from v$version;
BANNER
--------------------------------------------------------------------------------
Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - Production
PL/SQL Release 11.2.0.4.0 - Production
CORE 11.2.0.4.0 Production
TNS for Linux: Version 11.2.0.4.0 - Production
NLSRTL Version 11.2.0.4.0 - Production
首先创建数据表T。
SQL> create table t as select * from dba_objects;
Table created
SQL> create index idx_t_id on t(object_id);
Index created
SQL> exec dbms_stats.gather_table_stats(user,'T',cascade => true);
PL/SQL procedure successfully completed
下面我们先从执行计划层面进行分析研究。
2、Explain Plan研究执行计划
Explain Plan是我们经常使用分析SQL语句执行计划的方法。笔者发现对于alert index这类DDL操作,Explain语句依然可以分析出对应的结果。
首先测试rebuild语句。
SQL> explain plan for alter index idx_t_id rebuild;
Explained
SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 1483129259
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
--------------------------------------------------------------------------------
| 0 | ALTER INDEX STATEMENT | | 86129 | 420K| 336 (1)| 00:00:0
| 1 | INDEX BUILD NON UNIQUE| IDX_T_ID | | | |
| 2 | SORT CREATE INDEX | | 86129 | 420K| |
| 3 | INDEX FAST FULL SCAN| IDX_T_ID | | | |
--------------------------------------------------------------------------------
10 rows selected
这其中,我们首先看到了Index Fast Full Scan动作。在笔者之前的文章中,曾经比较详细的分析过Index Fast Full Scan和Index Full Scan的区别。简单说两者差异如下:
ü Index Fast Full Scan是标准的多快读操作;Index Full Scan是单块读操作;
ü Index Fast Full Scan返回结果是无序结果;Index Full Scan返回有序结果集合;
ü Index Fast Full Scan能进行并行操作;Index Full Scan只能支持单进程读动作;
在上面的执行计划中,我们发现rebuild操作没有以数据表为基础,而是以索引IDX_T_ID的数据(当然是叶子节点)作为创建依据。由于Index Fast Full Scan返回的无序结果集合,之后就调用了Sort Create Index动作形成新的索引对象。
综合来看,对于rebuild动作而言,在读取索引的过程中,以索引的叶子节点数据作为数据依据。更进一步说,如果rebuild的索引和数据表已经存在不一致的情况,,那么新生成的索引也一定是不一致的。
下面我们看rebuild online的分析:
SQL> explain plan for alter index idx_t_id rebuild online;
Explained
SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 1193657316
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
--------------------------------------------------------------------------------
| 0 | ALTER INDEX STATEMENT | | 86129 | 420K| 336 (1)| 00:00:0
| 1 | INDEX BUILD NON UNIQUE| IDX_T_ID | | | |
| 2 | SORT CREATE INDEX | | 86129 | 420K| |
| 3 | TABLE ACCESS FULL | T | 86129 | 420K| 336 (1)| 00:00:0
--------------------------------------------------------------------------------
10 rows selected
从执行计划看,两者的差异主要在第三步,就是Table Access Full操作,而且是基于数据表T的操作。所以说明:rebuild online是基于对原始数据表的数据收集,而且是针对数据表进行的全表扫描操作。
这也就部分解释了为什么rebuild online会比rebuild时间长一些,因为Table Access Full操作会访问所有的数据段结构,而Index Fast Full Scan会访问所有的索引段结构。一般而言,索引段是远远小于数据段的。
综合来看,rebuild online基于是数据表的内容,检索时间略长,但是引起的锁定动作也相对较小。
下面,笔者从实践跟踪角度,分析一下rebuild和rebuild online过程中数据读取的差异性。
更多详情见请继续阅读下一页的精彩内容:

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.

MySQL 쿼리 성능이 좋지 않은 주된 이유는 인덱스 사용, 쿼리 최적화에 의한 잘못된 실행 계획 선택, 불합리한 테이블 디자인, 과도한 데이터 볼륨 및 잠금 경쟁이 포함됩니다. 1. 색인이 느리게 쿼리를 일으키지 않으며 인덱스를 추가하면 성능이 크게 향상 될 수 있습니다. 2. 설명 명령을 사용하여 쿼리 계획을 분석하고 Optimizer 오류를 찾으십시오. 3. 테이블 구조를 재구성하고 결합 조건을 최적화하면 테이블 설계 문제가 향상 될 수 있습니다. 4. 데이터 볼륨이 크면 분할 및 테이블 디비전 전략이 채택됩니다. 5. 높은 동시성 환경에서 거래 및 잠금 전략을 최적화하면 잠금 경쟁이 줄어들 수 있습니다.

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
