このチュートリアルは、Java の基礎から実践的なアプリケーションまでビッグ データ分析スキルを習得するのに役立ちます。 Java の基本 (変数、制御フロー、クラスなど)、ビッグ データ ツール (Hadoop エコシステム、Spark、Hive)、および実践的なケース (OpenFlights からの飛行データの取得) が含まれています。 Hadoop を使用してデータを読み取り、処理し、フライトの目的地として最も頻繁に使用される空港を分析します。 Spark を使用してドリルダウンし、目的地への最新のフライトを見つけます。 Hive を使用して対話的にデータを分析し、各空港のフライト数をカウントします。
#Java の基礎から実践的な応用: ビッグデータの実践的な分析
#はじめに ビッグデータ時代の到来により、ビッグデータ分析スキルを習得することが重要になっています。このチュートリアルでは、Java の基礎から Java を使用した実践的なビッグ データ分析までを説明します。
Java の基本変数、データ型、演算子
Spark
HiveOpenFlights データセットからフライト データをダウンロードします。
ステップ 2: Hadoop を使用したデータの読み取りと書き込み
Hadoop と MapReduce を使用したデータの読み取りと処理。
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlightStats { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Flight Stats"); job.setJarByClass(FlightStats.class); job.setMapperClass(FlightStatsMapper.class); job.setReducerClass(FlightStatsReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } public static class FlightStatsMapper extends Mapper<Object, Text, Text, IntWritable> { @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] line = value.toString().split(","); context.write(new Text(line[1]), new IntWritable(1)); } } public static class FlightStatsReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } }
ステップ 3: Spark を使用してさらに分析する
Spark DataFrame と SQL クエリを使用してデータを分析します。
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class FlightStatsSpark { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("Flight Stats Spark").getOrCreate(); Dataset<Row> flights = spark.read().csv("hdfs:///path/to/flights.csv"); flights.createOrReplaceTempView("flights"); Dataset<Row> top10Airports = spark.sql("SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10"); top10Airports.show(10); } }
ステップ 4: Hive 対話型クエリを使用する
Hive 対話型クエリを使用してデータを分析します。
CREATE TABLE flights (origin STRING, dest STRING, carrier STRING, dep_date STRING, dep_time STRING, arr_date STRING, arr_time STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA INPATH 'hdfs:///path/to/flights.csv' OVERWRITE INTO TABLE flights; SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10;
結論
このチュートリアルを通じて、Java の基本と、実際のビッグ データ分析に Java を使用するスキルを習得しました。 Hadoop、Spark、Hive を理解することで、大規模なデータ セットを効率的に分析し、そこから貴重な洞察を抽出できます。
以上がJava の基礎から実践的な応用への入門: ビッグデータの実践的な分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。