生成 AI は、テキスト、画像、音声、合成データなど、さまざまな種類のコンテンツを生成できる人間用人工知能テクノロジーの一種です。では、人工知能とは何でしょうか?人工知能と機械学習の違いは何ですか?
#人工知能は、コンピュータ サイエンスの一分野であり、自律的にアクションを推論、学習、実行できるインテリジェント エージェントの作成を研究します。システム。
人工知能の中核は、人間のように考えて行動する機械を構築する理論と方法に関係しています。この分野では、機械学習 ML は人工知能の分野です。入力データに基づいてモデルをトレーニングするプログラムまたはシステムです。トレーニングされたモデルは、モデルがトレーニングされた統合データから派生した新しいデータまたは未確認のデータから有用な予測を行うことができます。 機械学習により、コンピューターは明示的なプログラミングを行わずに学習できるようになります。機械学習モデルの最も一般的な 2 つのタイプは、教師なし ML モデルと教師あり ML モデルです。 2 つの主な違いは、教師ありモデルの場合はラベルがあり、ラベル付きデータは名前、タイプ、番号などのラベルが付いたデータであり、教師なしデータはラベルのないデータであることです。#この図は、教師ありモデルが解決しようとする問題の例です。
たとえば、あなたがレストランのオーナーで、請求金額、注文の種類に基づいてさまざまな人々が与えたチップの量、注文に基づいてピックアップか配達かどうかに関する履歴データがあるとします。タイプ 非常に多くの異なる人々に。教師あり学習では、モデルは過去の例から学習して将来の値を予測します。したがって、ここでのモデルは、合計請求額を使用して、注文が集荷か配送かに基づいて将来の支出を予測します。この例は、教師なしモデルが解決できる可能性のある問題状況を示しています。ここでは、勤続年数と収入を確認し、従業員をグループ化してクラスターを取得して確認する必要があります。誰かが速い軌道に乗っているなら。教師なし問題は、生データを調べて、それが自然にグループ化されているかどうかを確認することを目的としています。もう少し深く掘り下げて、これをグラフで示してみましょう。
上記の概念は、生成 AI を理解するための基礎です。
機械学習はさまざまな技術を含む幅広い分野ですが、ディープラーニングは人工ニューラル ネットワークを使用する機械学習の一種であり、機械学習よりも複雑なパターンを処理できます。
深層学習モデルには通常、複数のニューロン層があります。これにより、従来の機械学習モデルよりも複雑なパターンを学習できるようになります。ニューラル ネットワークは、ラベル付きデータとラベルなしデータの両方を処理できます。これは、半教師あり学習と呼ばれます。半教師あり学習では、少量のラベル付きデータと大量のラベルなしデータでニューラル ネットワークがトレーニングされます。
ラベル付きデータは、ニューラル ネットワークがタスクの基本概念を学習するのに役立ちます。また、ラベルのないデータは、ニューラル ネットワークを新しい例に一般化するのに役立ちます。この人工知能分野における位置づけ、つまり人工ニューラル ネットワークを使用すると、ラベル付きデータとラベルなしデータを教師あり、教師なし、半教師ありの方法で処理できます。大規模な言語モデルは、深層学習、深層学習モデル、または機械学習モデル一般のサブセットでもあります。
ディープラーニングは、識別型と生成型の 2 つのタイプに分類できます。識別モデルは、データ ポイントのラベルを分類または予測するために使用されるモデルです。識別モデルは通常、ラベル付けされたデータ ポイントのデータセットでトレーニングされます。データ ポイントの特徴とラベルの間の関係を学習し、識別モデルがトレーニングされると、それを使用して新しいデータ ポイントのラベルを予測できます。生成モデルは、学習された既存データの確率分布に基づいて新しいデータ インスタンスを生成するため、生成モデルは新しいコンテンツを生成します。
生成モデルは新しいデータ インスタンスを出力でき、識別モデルはさまざまなタイプのデータ インスタンスを区別できます。
この図は、従来の機械学習モデルを示しています。違いは、データとラベルの間の関係、または予測する内容です。下の画像は、新しいコンテンツを生成して出力するためにコンテンツ パターンを学習しようとしている生成 AI モデルを示しています。
出力される外部ラベルが数値または確率である場合、それはスパムや非スパムなどの非生成 AI です。出力が自然言語の場合、音声、テキスト、画像、ビデオなどの生成 AI になります。
モデルの出力はすべての入力の関数であり、Y が予測売上などの数値の場合、それは GenAI ではありません。 Y が文の場合、売上を定義するようなものです。質問がテキストによる応答を引き出すという点で生成的です。彼の応答は、モデルがトレーニングされたすべての膨大な量のビッグデータに基づいています。
要約すると、従来の教師ありおよび教師なし学習プロセスでは、トレーニング コードとラベル付きデータを使用してモデルを構築します。ユースケースや問題に応じて、モデルは予測を提供したり、何かを分類またはクラスター化したり、この力を使用してモデルを生成したプロセスがどれほど堅牢であるかを示すことができます。
#GenAI プロセスは、トレーニング コード、すべてのデータ型のラベル付きデータおよびラベルなしデータを取得し、基本モデルを構築できます。新しいコンテンツを生成します。テキスト、コード、画像、オーディオ、ビデオなど。
従来のプログラミングからニューラル ネットワーク、生成モデルに至るまで、私たちは長い道のりを歩んできました。従来のプログラミングでは、猫を区別するためのルールをコーディングする必要がありました。種類は動物で、足が4本、耳が2つ、毛皮などが生えています。
ニューラル ネットワークの波の中で、私たちは猫や犬の写真をネットワークに与えることができます。そしてそれは猫ですかと尋ねました。彼は猫を予言するだろう。生成型 AI の波では、ユーザーとして私たちは独自のコンテンツを生成できます。
テキスト、画像、オーディオ、ビデオなど、Python
それでは、生成人工知能とは何なのかを定義しましょう。
GenAI は、既存のコンテンツから学習した知識に基づいて新しいコンテンツを作成する人工知能の一種であり、既存のコンテンツから学習するプロセスはトレーニングと呼ばれます。また、プロンプトが与えられたときに統計モデルを作成し、そのモデルを使用して予想される応答を予測し、新しいコンテンツを生成します。
基本的に、データの基礎となる構造コンテンツを学習し、トレーニング データに似た新しいサンプルを生成できます。前に述べたように、生成言語モデルは、示された例から学んだことを取得し、その情報に基づいてまったく新しいものを作成できます。
大規模言語モデルは、自然に聞こえる言語の形式で新しいテキストの組み合わせを生成し、画像モデルを生成し、画像を入力として受け取り、テキストを出力できるため、生成型人工知能の一種です。 、別の画像またはビデオ。たとえば、「出力テキスト」では視覚的な Q&A を取得でき、「出力画像」ではイメージ補完を生成し、「出力ビデオ」ではアニメーションを生成します。
# テキストを入力として受け取り、さらに多くのテキスト、画像、音声、または意思決定を出力できる言語モデルを生成します。たとえば、出力テキストの下に質問と回答を生成し、出力画像の下にビデオを生成します。
生成言語モデルはトレーニング データを通じてパターンと言語について学習し、テキストが与えられると次に何が起こるかを予測すると述べました。
生成言語モデルはパターン マッチング システムであり、提供されたデータに基づいてパターンを学習します。 トレーニング データから学んだことに基づいて、文を完成させる方法の予測を提供します。大量のテキスト データでトレーニングされ、さまざまなプロンプトや質問に応じて通信し、人間のようなテキストを生成することができました。
transformer では、Hallucin はモデルによって生成された単語またはフレーズであり、通常はナンセンスであるか、文法的に正しくありません。幻覚は、モデルが十分なデータでトレーニングされていない、モデルがノイズの多いデータや汚いデータでトレーニングされている、モデルに十分なコンテキストが与えられていない、モデルに十分な制約が与えられていないなど、さまざまな要因によって引き起こされる可能性があります。
また、必ずしも正しくない情報を生成する可能性があるその他の TPT3.5 など、モデルが誤った情報や誤解を招く情報を生成する可能性も高くなります。プロンプトワードは、大規模な言語モデルへの入力として与えられる小さなテキストです。また、これを使用して、さまざまな方法でモデルの出力を制御できます。
ヒント設計は、大規模な言語モデルから目的の出力コンテンツを生成するヒントを作成するプロセスです。前に述べたように、LLM は入力されたトレーニング データに大きく依存します。入力データのパターンと構造を分析することで学習します。ただし、ブラウザベースのプロンプトにアクセスすることで、ユーザーは独自のコンテンツを生成できます。
データベースの入力タイプのロードマップを示しました。関連するモデル タイプは次のとおりです。
テキストツーテキスト モデル。自然言語入力を受け取り、テキスト出力を生成します。これらのモデルは、テキスト間のマッピングを学習するようにトレーニングされています。たとえば、ある言語から別の言語への翻訳です。
#テキストから画像へのモデル。テキストから画像へのモデルは多数の画像でトレーニングされるためです。各画像には短いテキストの説明が付いています。拡散はこれを達成するために使用される 1 つの方法です。
#テキストをビデオに変換し、テキストを 3D に変換します。
テキストからビデオへのモデルは、単一の文から完全なスクリプトまでのテキスト入力からのみビデオ コンテンツを生成します。出力は、ユーザーのテキストによる説明に対応する 3 次元オブジェクトを生成する 3D モデルへの入力テキストに対応するビデオのようなテキストです。これは、たとえばゲームや他の 3D 世界に使用できます。
#基本モデルは、大量のデータで事前トレーニングされた大規模な AI モデルです。目的は、感情分析、画像、キャプション、オブジェクト認識などのさまざまな下流タスクを適応または微調整することです。
基本的なビジョン モデルには安定した拡散が含まれており、テキストの説明からパッケージ品質の画像を効果的に生成できます。顧客が製品やサービスについてどう感じているかに関する情報を収集する必要がある場合があるとします。
ユーザーが自然言語を使用してアプリケーションと対話できるようにする会話型人工知能エンジンもあります。独自のデジタル アシスタント、カスタム検索エンジン、ナレッジ ベース、トレーニング アプリなどを作成できます。 生成的 AI アプリケーション開発を複雑なパズルの組み立てとみなした場合、データ サイエンス、機械学習、プログラミングなど、それに必要な技術的能力はそれぞれ、パズル。 技術的な蓄積のない企業がこれらのパズルのピースを理解することはすでに困難であり、それらを組み立てるのはさらに困難な作業になります。しかし、技術力が弱いこれらの伝統的な企業に、事前に組み立てられたパズルのピースを提供できるサービスがあれば、これらの伝統的な企業はパズル全体をより簡単かつ迅速に完成させることができます。 国内市場の実際の状況から判断すると、生成 AI の開発は、トレンドを追いかけている実務家が期待するほど楽観的でもありませんし、否定論者が言うほど悲観的でもありません。 エンタープライズ ユーザーは、アプリケーションの堅牢性、経済性、セキュリティ、使いやすさを追求します。これは、大規模な言語モデルなどの生成 AI がトレーニングに高い計算能力コストを費やすことを躊躇しないという事実と一致しています。より高い能力を実現するためのプロセス、まったく異なるパス。 この背後にある中心的な問題は、より優れた想像力を備えたエンタープライズレベルの生成 AI の分野で最も重要なことは、大規模なモデルがどれほど強力であるかではなく、基本的なモデルからどのように進化できるかであるということです。モデルをさまざまな分野で具体的に応用することで、経済社会全体の発展に貢献します。
モデル デプロイメント ツールは、開発者がさまざまなデプロイメント オプションを使用して実稼働環境にモデルをデプロイするのに役立ちます。また、モデル監視ツールは、開発者がダッシュボードやさまざまなメトリクスを使用して、実稼働環境での ML モデルのパフォーマンスを監視するのに役立ちます。
以上がなぜ生成 AI はさまざまな業界で求められているのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

GoogleのTimesFM:革新的な前提条件の時系列モデル Google Researchは、TimesFMを発表しました。これは、単変量の時系列予測用に設計された画期的な前提条件の基礎モデルです。 この革新的なモデルは、頻繁に複雑なプロを簡素化します

高次元ベクトル検索:高度なインデックス作成手法のマスタリング 今日のデータ駆動型の世界では、推奨システム、画像認識、自然言語処理(NLP)、異常などのアプリケーションに高次元ベクトルが重要です

Openaiのクリップ(コントラスト言語 - イメージ前訓練)モデル、特にクリップVIT-L14バリアントは、マルチモーダル学習と自然言語処理の大幅な進歩を表しています。 この強力なコンピュータービジョンシステムは、RepreSeに優れています

Wordwareを使用してAIエージェントのパワーを活用してください:楽なAIエージェント作成のためのノーコードプラットフォーム。 AIエージェントは、コンピューターとの対話方法、タスクの自動化、意思決定の合理化に革命をもたらしています。 このブログは、構築方法を示しています

生成AI:次のスマートフォンの戦場 スマートフォン業界は、高度な生成AIを統合するための競争である激しい競争に閉じ込められています。 ユーザーの相互作用の向上から生産性の向上まで、利害関係は高いです。 AppleのiPhone16

生成AI:10の必須redditコミュニティへのガイド 生成AIは急速に進化しており、新しいモデルが絶えず出現しています。 更新のままであることが重要であり、Redditはこの分野に特化した活気のあるコミュニティを提供しています。この記事はtを強調しています

導入 人工知能(AI)は、AIの研究開発への実質的な投資によって促進されたさまざまな職場に急速に統合されています。 AIのアプリケーションは、仮想アシスタントのような単純なタスクからcomまで、幅広い範囲に広がっています

導入 データベースの領域では、ヌル値はしばしば独自の課題を提示します。 欠落している、未定義、または未知のデータを表して、データ管理と分析を複雑にする可能性があります。顧客のフィードバックが欠落している販売データベースまたはORDEを検討してください


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

WebStorm Mac版
便利なJavaScript開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
