ホームページ >Java >&#&チュートリアル >Java 再帰の基本原理と応用分析
Java 再帰についての視点: その基本原理と使用法を理解するには、具体的なコード例が必要です。
はじめに:
1. 再帰の基本原則
2. 再帰が使用される一般的なシナリオ
3. 再帰例 1: 階乗計算
階乗は一般的な数学の問題で、n! として示される非負の整数 n の階乗を計算することです。階乗の定義は次のとおりです: n! = 1 2 3 ...
public class FactorialExample { public static int factorial(int n) { // 基线条件 if (n == 0 || n == 1) { return 1; } // 递归条件 else { return n * factorial(n-1); } } public static void main(String[] args) { int num = 5; int result = factorial(num); System.out.println(num + "! = " + result); } }
この例では、再帰関数
factorial は引数として非負の整数 n を受け取り、それ自体を再帰的に呼び出すことによって n の階乗を計算します。このうち、ベースライン条件は、n が 0 または 1 に等しい場合、階乗値は 1 であるということであり、再帰条件は、元の問題をより小さな部分問題に分解する、つまり (n-1 の階乗を計算する) ことです。 ) を計算し、その結果を n で乗算します。
4. 再帰の例 2: フィボナッチ数列
フィボナッチ数列は古典的な再帰問題であり、次のように定義されます:
public class FibonacciExample { public static int fibonacci(int n) { // 基线条件 if (n == 0) { return 0; } else if (n == 1) { return 1; } // 递归条件 else { return fibonacci(n-1) + fibonacci(n-2); } } public static void main(String[] args) { int num = 10; int result = fibonacci(num); System.out.println("Fibonacci(" + num + ") = " + result); } }
この例では、再帰関数
fibonacci は、負でない整数 n をパラメータとして受け取り、それ自体を再帰的に呼び出すことによってフィボナッチ数列の n 番目の数を計算します。ベースライン条件は、n が 0 または 1 に等しい場合、フィボナッチ数列の値は 0 または 1 であることです。再帰的条件は、元の問題を 2 つの小さなサブ問題に分解すること、つまり (n-1) を計算することです。と (n -2) フィボナッチ数を計算し、結果を加算します。
結論:
以上がJava 再帰の基本原理と応用分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。