検索
ホームページテクノロジー周辺機器AI多次元テンソルと線形層の間の相互作用原理は何ですか?

多次元テンソルと線形層の間の相互作用原理は何ですか?

線形層は、深層学習で最も一般的に使用される層の 1 つであり、ニューラル ネットワークで重要な役割を果たします。画像分類、物体検出、音声認識などのタスクで広く使用されています。この記事では、多次元テンソルにおける線形層の役割に焦点を当てます。

まず、線形レイヤーの基本原理を確認しましょう。入力テンソルの場合、W のパラメーターは (n_out, n_in)、b の形状は (n_out,) です。 n_in は入力テンソルのサイズを表し、n_out は出力テンソルのサイズを表します。入力テンソルが 1 次元テンソル x∈R^n_in であり、出力テンソルも 1 次元テンソル y∈R^n_out であると仮定します。線形層では、入力テンソルが重み行列 W とバイアス ベクトル b によって線形変換され、出力テンソル y が取得されます。この線形変換は、y = Wx b として表すことができます。このうち、Wの各行は線形層の出力ニューロンの重みベクトルを表し、bの各要素は対応する出力ニューロンのバイアス値を表す。最終出力テンソル y の各要素は、対応する出力ニューロンの重みベクトルと入力テンソル、および対応するオフセット値のドット積を実行することによって取得されます。

さて、形状が (n_1,n_2,…,n_k) である多次元テンソル X があるとします。これを線形層に渡して、形状 (m_1,m_2,…,m_l) を持つ出力テンソル Y を生成する必要があります。このとき、私たちは何をすべきでしょうか?

まず、X を 1 次元テンソルに平坦化する必要があります。このプロセスは「レベリング」操作と呼ばれることが多く、PyTorch の view 関数を使用して実装できます。具体的には、X の形状を (n_1\times n_2\times...\times n_k,) に変更できます。つまり、すべての次元の要素を 1 つの列に配置します。このようにして、サイズが n_{in}=n_1\times n_2\times…\times n_k の 1 次元テンソル x を取得します。

次に、x を線形層に渡し、出力テンソル y を取得します。具体的には、線形層の計算式を使用できます:

y=Wx b

ここで、W の形状は (m_{ out} ,n_{in})、b の形状は (m_{out},)、m_{out} は出力テンソルのサイズを表します。乗算の結果 Wx は、形状 (m_{out},) を持つ 1 次元テンソルであり、オフセット b を追加すると、形状 (m_{out},) を持つ出力テンソル y が得られます。

最後に、y を多次元テンソルの形式に変換し直す必要があります。具体的には、PyTorch の view 関数を使用して、y の形状を (m_1, m_2,...,m_l) に変更できます。このようにして、最終出力テンソル Y を取得します。

多次元テンソルを 1 次元テンソルに平坦化するときは、テンソル内の要素の順序が変わらないことを確認する必要があることに注意してください。たとえば、形状 (2,3) の 2 次元テンソル X があるとします。

XX=\begin{bmatrix}1&2&3\4&5&6\end{bmatrix}

これを 1 次元テンソルに平坦化する必要があります。 view(-1) を使用して実装すると、結果は次のようになります:

xx=[1,2,3,4,5,6]

ここでは、要素 (1,2) と (4,5) の 2 行をまとめて配置し、順序を変更します。したがって、正しい操作は、view(-1) を使用してテンソルを平坦化し、次に view(1,-1) を使用して元の形状に変換することです。 x =\begin{bmatrix}1&2&3&4&5&6\end{bmatrix}

##X=\begin{bmatrix}1&2&3\4&5&6\end{bmatrix}

このようにして、多次元テンソルを線形層に正しく渡し、正しい出力テンソルを取得できます。

多次元テンソルにおける線形層の役割は、各サンプルの独立した線形変換として見ることができることに注意してください。たとえば、形状 (N、C、H、W) の 4 次元テンソル X があるとします。ここで、N はサンプル数を表し、C はチャネル数を表し、H と W はそれぞれ高さと幅を表します。拡張できる線形層は、各サンプルに対して独立した線形変換を実行して、(N,m_{out}) の形状を持つ出力テンソル Y を取得します。最後に、Y を最初の次元に沿って元の形状 (N,m_1,m_2,…,m_l) に復元できます。

要するに、多次元テンソル上の線形層の役割は、各サンプルの独立した線形変換として見ることができます。実際のアプリケーションでは、通常、多次元テンソルを 1 次元テンソルに平坦化し、それらを線形層に渡します。平坦化操作では、要素の順序が変更されないようにする必要があります。そうしないと、不正確な計算結果が得られます。最後に、次の計算ステップのために出力テンソルを元の形状に復元する必要があります。

以上が多次元テンソルと線形層の間の相互作用原理は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール