検索
ホームページテクノロジー周辺機器AISqueezeNet の概要とその特徴

SqueezeNet の概要とその特徴

Jan 22, 2024 pm 07:15 PM
人工ニューラルネットワーク

SqueezeNet は、高精度と低複雑性のバランスが取れた小型で正確なアルゴリズムであり、リソースが限られているモバイル システムや組み込みシステムに最適です。

2016 年、DeepScale、カリフォルニア大学バークレー校、スタンフォード大学の研究者は、コンパクトで効率的な畳み込みニューラル ネットワーク (CNN)-SqueezeNet を提案しました。近年、研究者は SqueezeNet v1.1 や SqueezeNet v2.0 など、SqueezeNet にいくつかの改良を加えてきました。両方のバージョンの改良により、精度が向上するだけでなく、計算コストも削減されます。 SqueezeNet v1.1 は ImageNet データセットの精度を 1.4% 向上させ、SqueezeNet v2.0 は精度を 1.8% 向上させます。同時に、これら 2 つのバージョンではパラメータの数が 2.4 分の 1 に削減されています。これは、SqueezeNet が高精度を維持しながらモデルの複雑さと計算リソース要件を軽減できることを意味します。 SqueezeNet はコンパクトな設計と効率的な操作により、コンピューティング リソースが限られたシナリオで大きな利点をもたらします。このため、SqueezeNet はエッジ デバイスや組み込みシステムでディープ ラーニングを適用するのに最適です。 SqueezeNet は、継続的な改善と最適化を通じて、効率的な画像分類とオブジェクト検出タスクのための実現可能なソリューションを提供します。

SqueezeNet の概要とその特徴

SqueezeNet は、高精度を維持しながらパラメータの数を効果的に削減するために 1x1 フィルタと 3x3 フィルタを組み合わせた特別なタイプの畳み込み層である fire モジュールを使用するため、リソースを大量に消費します。装置。他の CNN が必要とする計算リソースの一部のみを使用して、高精度の結果を達成できます。

SqueezeNet の主な利点は、精度と計算リソースのバランスが取れていることです。 AlexNet と比較すると、SqueezeNet のパラメータ数は 50 分の 1 に減り、1 秒あたりの浮動小数点演算数 (FLOPS) の要件は 10 分の 1 に減ります。したがって、携帯電話や IoT デバイスなど、コンピューティング リソースが限られたエッジ デバイスでも実行できます。この効率性により、SqueezeNet はリソースに制約のある環境での深層学習に最適です。

SqueezeNet は、チャネル スクイーズと呼ばれる方法を使用します。これは、テクノロジーの主要な革新の 1 つです。 SqueezeNet は、モデルの畳み込み層のチャネル数を減らすことで、精度を維持しながらネットワークの計算コストを削減します。 Fire モジュールや高度な圧縮などの他の方法に加えて、SqueezeNet は効率を向上させるためにチャネル圧縮も使用します。この方法では、冗長なチャネルを削除することでモデルのパラメータ数を減らすことができるため、計算量が削減され、モデルの実行速度が向上します。このチャネル スクイーズ手法により、モデルの精度を維持しながらネットワークの計算コストが効果的に削減され、SqueezeNet は軽量で効率的なニューラル ネットワーク モデルになります。

従来の CNN とは異なり、SqueezeNet は多くの計算能力を必要とせず、他の機械学習パイプラインの特徴抽出器と併用できます。これにより、他のモデルも SqueezeNet によって学習された機能の恩恵を受けることができ、モバイル デバイスのパフォーマンスが向上します。

SqueezeNet は、そのアーキテクチャの革新性と実績のあるパフォーマンスの向上が認められており、他の CNN アーキテクチャで広く採用されています。

以上がSqueezeNet の概要とその特徴の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Huggingface smollmであなたの個人的なAIアシスタントを構築する方法Huggingface smollmであなたの個人的なAIアシスタントを構築する方法Apr 18, 2025 am 11:52 AM

オンデバイスAIの力を活用:個人的なチャットボットCLIの構築 最近では、個人的なAIアシスタントの概念はサイエンスフィクションのように見えました。 ハイテク愛好家のアレックスを想像して、賢くて地元のAI仲間を夢見ています。

メンタルヘルスのためのAIは、スタンフォード大学でのエキサイティングな新しいイニシアチブによって注意深く分析されますメンタルヘルスのためのAIは、スタンフォード大学でのエキサイティングな新しいイニシアチブによって注意深く分析されますApr 18, 2025 am 11:49 AM

AI4MHの最初の発売は2025年4月15日に開催され、有名な精神科医および神経科学者であるLuminary Dr. Tom Insel博士がキックオフスピーカーを務めました。 Insel博士は、メンタルヘルス研究とテクノでの彼の傑出した仕事で有名です

2025年のWNBAドラフトクラスは、成長し、オンラインハラスメントの成長と戦いに参加します2025年のWNBAドラフトクラスは、成長し、オンラインハラスメントの成長と戦いに参加しますApr 18, 2025 am 11:44 AM

「私たちは、WNBAが、すべての人、プレイヤー、ファン、企業パートナーが安全であり、大切になり、力を与えられたスペースであることを保証したいと考えています」とエンゲルバートは述べ、女性のスポーツの最も有害な課題の1つになったものに取り組んでいます。 アノ

Pythonビルトインデータ構造の包括的なガイド-AnalyticsVidhyaPythonビルトインデータ構造の包括的なガイド-AnalyticsVidhyaApr 18, 2025 am 11:43 AM

導入 Pythonは、特にデータサイエンスと生成AIにおいて、プログラミング言語として優れています。 大規模なデータセットを処理する場合、効率的なデータ操作(ストレージ、管理、アクセス)が重要です。 以前に数字とstをカバーしてきました

Openaiの新しいモデルからの代替案からの第一印象Openaiの新しいモデルからの代替案からの第一印象Apr 18, 2025 am 11:41 AM

潜る前に、重要な注意事項:AIパフォーマンスは非決定論的であり、非常にユースケース固有です。簡単に言えば、走行距離は異なる場合があります。この(または他の)記事を最終的な単語として撮影しないでください。これらのモデルを独自のシナリオでテストしないでください

AIポートフォリオ| AIキャリアのためにポートフォリオを構築する方法は?AIポートフォリオ| AIキャリアのためにポートフォリオを構築する方法は?Apr 18, 2025 am 11:40 AM

傑出したAI/MLポートフォリオの構築:初心者と専門家向けガイド 説得力のあるポートフォリオを作成することは、人工知能(AI)と機械学習(ML)で役割を確保するために重要です。 このガイドは、ポートフォリオを構築するためのアドバイスを提供します

エージェントAIがセキュリティ運用にとって何を意味するのかエージェントAIがセキュリティ運用にとって何を意味するのかApr 18, 2025 am 11:36 AM

結果?燃え尽き症候群、非効率性、および検出とアクションの間の隙間が拡大します。これは、サイバーセキュリティで働く人にとってはショックとしてはありません。 しかし、エージェントAIの約束は潜在的なターニングポイントとして浮上しています。この新しいクラス

Google対Openai:学生のためのAIの戦いGoogle対Openai:学生のためのAIの戦いApr 18, 2025 am 11:31 AM

即時の影響と長期パートナーシップ? 2週間前、Openaiは強力な短期オファーで前進し、2025年5月末までに米国およびカナダの大学生にChatGpt Plusに無料でアクセスできます。このツールにはGPT ‑ 4o、Aが含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター