検索
ホームページデータベースmysql チュートリアル简单分析MySQL中的primary key功能_MySQL

在5.1.46中优化器在对primary key的选择上做了一点改动:

Performance: While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes will now be preferred, making full table scans less likely。

该版本中增加了find_shortest_key函数,该函数的作用可以认为是选择最小key length的

索引来满足我们的查询。

该函数是怎么工作的:

代码如下:

What find_shortest_key should do is the following. If the primary key is a covering index

and is clustered, like in MyISAM, then the behavior today should remain the same. If the

primary key is clustered, like in InnoDB, then it should not consider using the primary

key because then the storage engine will have to scan through much more data.

调用Primary_key_is_clustered(),当返回值为true,执行find_shortest_key:选择key length最小的覆盖索引(Secondary covering indexes),然后来满足查询。

首先在5.1.45中测试:

$mysql -V

mysql Ver 14.14 Distrib 5.1.45, for unknown-linux-gnu (x86_64) using EditLine wrapper

root@test 03:49:45>create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb;

Query OK, 0 rows affected (0.16 sec)

root@test 03:49:47>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

root@test 03:49:51>

root@test 03:49:51>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

创建索引ind_1:

root@test 03:49:53>alter table test add index ind_1(name,d);

Query OK, 0 rows affected (0.09 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 03:50:08>explain select count(*) from test;

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | PRIMARY | 4    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

1 row in set (0.00 sec)

添加ind_2:

root@test 08:04:35>alter table test add index ind_2(d);

Query OK, 0 rows affected (0.07 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 08:04:45>explain select count(*) from test;

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | PRIMARY | 4    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

1 row in set (0.00 sec)

上面的版本【5.1.45】中,可以看到优化器选择使用主键来完成扫描,并没有使用ind_1,ind_2来完成查询;

接下来是:5.1.48

$mysql -V

mysql Ver 14.14 Distrib 5.1.48, for unknown-linux-gnu (x86_64) using EditLine wrapper

root@test 03:13:15> create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb;

Query OK, 0 rows affected (0.00 sec)

root@test 03:48:04>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

root@test 03:48:05>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now());

Query OK, 5 rows affected (0.01 sec)

Records: 5 Duplicates: 0 Warnings: 0

创建索引ind_1:

root@test 03:13:57>alter table test add index ind_1(name,d);

Query OK, 0 rows affected (0.01 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 03:15:55>explain select count(*) from test;

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| id | select_type | table | type | possible_keys | key  | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | ind_1 | 52   | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

root@test 08:01:56>alter table test add index ind_2(d);

Query OK, 0 rows affected (0.03 sec)

Records: 0 Duplicates: 0 Warnings: 0

添加ind_2:

root@test 08:02:09>explain select count(*) from test;

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| id | select_type | table | type | possible_keys | key  | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | ind_2 | 9    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

1 row in set (0.00 sec)

版本【5.1.48】中首先明智的选择ind_1来完成扫描,并没有考虑到使用主键(全索引扫描)来完成查询,随后添加ind_2,由于 ind_1的key长度是大于ind_2 key长度,所以mysql选择更优的ind_2来完成查询,可以看到mysql在选择方式上也在慢慢智能了。

观察性能:

5.1.48

root@test 08:49:32>set profiling =1;

Query OK, 0 rows affected (0.00 sec)

root@test 08:49:41>select count(*) from test;

+———-+

| count(*) |

+———-+

| 5242880 |

+———-+

1 row in set (1.18 sec)

root@test 08:56:30>show profile cpu,block io for query 1;

+——————————–+———-+———-+————+————–+—————+

| Status             | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |

+——————————–+———-+———-+————+————–+—————+

| starting            | 0.000035 | 0.000000 |  0.000000 |      0 |       0 |

| checking query cache for query | 0.000051 | 0.000000 |  0.000000 |      0 |       0 |

| Opening tables         | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| System lock          | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| Table lock           | 0.000010 | 0.000000 |  0.000000 |      0 |       0 |

| init              | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| optimizing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| statistics           | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| preparing           | 0.000012 | 0.000000 |  0.000000 |      0 |       0 |

| executing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| Sending data          | 1.178452 | 1.177821 |  0.000000 |      0 |       0 |

| end              | 0.000016 | 0.000000 |  0.000000 |      0 |       0 |

| query end           | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| freeing items         | 0.000040 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000002 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000086 | 0.000000 |  0.000000 |      0 |       0 |

| cleaning up          | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

+——————————–+———-+———-+————+————–+—————+

对比性能:

5.1.45

root@test 08:57:18>set profiling =1;

Query OK, 0 rows affected (0.00 sec)

root@test 08:57:21>select count(*) from test;

+———-+

| count(*) |

+———-+

| 5242880 |

+———-+

1 row in set (1.30 sec)

root@test 08:57:27>show profile cpu,block io for query 1;

+——————————–+———-+———-+————+————–+—————+

| Status             | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |

+——————————–+———-+———-+————+————–+—————+

| starting            | 0.000026 | 0.000000 |  0.000000 |      0 |       0 |

| checking query cache for query | 0.000041 | 0.000000 |  0.000000 |      0 |       0 |

| Opening tables         | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| System lock          | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| Table lock           | 0.000008 | 0.000000 |  0.000000 |      0 |       0 |

| init              | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| optimizing           | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

| statistics           | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| preparing           | 0.000012 | 0.000000 |  0.000000 |      0 |       0 |

| executing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| Sending data          | 1.294178 | 1.293803 |  0.000000 |      0 |       0 |

| end              | 0.000016 | 0.000000 |  0.000000 |      0 |       0 |

| query end           | 0.000004 | 0.000000 |  0.000000 |      0 |       0 |

| freeing items         | 0.000040 | 0.000000 |  0.001000 |      0 |       0 |

| logging slow query       | 0.000002 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000080 | 0.000000 |  0.000000 |      0 |       0 |

| cleaning up          | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

+——————————–+———-+———-+————+————–+—————+

从上面的profile中可以看到在Sending data上,差异还是比较明显的,mysql不需要扫描整个表的页块,而是扫描表中索引key最短的索引页块来完成查询,这样就减少了很多不必要的数据。

PS:innodb是事务引擎,所以在叶子节点中除了存储本行记录外,还会多记录一些关于事务的信息(DB_TRX_ID ,DB_ROLL_PTR 等),因此单行长度额外开销20个字节左右,最直观的方法是将myisam转为innodb,存储空间会明显上升。那么在主表为t(id,name,pk(id)),二级索引ind_name(name,id),这个时候很容易混淆,即使只有两个字段,第一索引还是比第二索引要大(可以通过innodb_table_monitor观察表的的内部结构)在查询所有id的时候,优化器还是会选择第二索引ind_name。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Innodb Redoログの役割を説明し、ログを元に戻します。Innodb Redoログの役割を説明し、ログを元に戻します。Apr 15, 2025 am 12:16 AM

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?Apr 15, 2025 am 12:15 AM

説明コマンドのキーメトリックには、タイプ、キー、行、および追加が含まれます。 1)タイプは、クエリのアクセスタイプを反映しています。値が高いほど、constなどの効率が高くなります。 2)キーは使用されているインデックスを表示し、nullはインデックスがないことを示します。 3)行はスキャンされた行の数を推定し、クエリのパフォーマンスに影響します。 4)追加の情報を最適化する必要があるというFilesortプロンプトを使用するなど、追加情報を提供します。

説明の一時的なステータスを使用し、それを回避する方法は何ですか?説明の一時的なステータスを使用し、それを回避する方法は何ですか?Apr 15, 2025 am 12:14 AM

Temporaryを使用すると、MySQLクエリに一時テーブルを作成する必要があることが示されています。これは、異なる列、またはインデックスされていない列を使用して順番に一般的に見られます。インデックスの発生を回避し、クエリを書き直し、クエリのパフォーマンスを改善できます。具体的には、expliect出力に使用を使用する場合、MySQLがクエリを処理するために一時テーブルを作成する必要があることを意味します。これは通常、次の場合に発生します。1)個別またはグループビーを使用する場合の重複排除またはグループ化。 2)Orderbyに非インデックス列が含まれているときに並べ替えます。 3)複雑なサブクエリを使用するか、操作に参加します。最適化方法には以下が含まれます。1)OrderbyとGroupB

さまざまなSQLトランザクションの分離レベル(読み取り、commited、繰り返し読み取り、シリアル化可能、シリアル化可能)とmysql/innodbの意味を説明してください。さまざまなSQLトランザクションの分離レベル(読み取り、commited、繰り返し読み取り、シリアル化可能、シリアル化可能)とmysql/innodbの意味を説明してください。Apr 15, 2025 am 12:11 AM

MySQL/INNODBは、4つのトランザクション分離レベルをサポートしています。 1.ReadunCommittedは、知らないデータを読み取ることができます。 2。読み込みは汚い読み取りを回避しますが、繰り返しのない読みが発生する可能性があります。 3. RepeatablerEadはデフォルトレベルであり、汚い読み取りと非回復不可能な読みを避けますが、幻の読み取りが発生する可能性があります。 4. Serializableはすべての並行性の問題を回避しますが、同時性を低下させます。適切な分離レベルを選択するには、データの一貫性とパフォーマンス要件のバランスをとる必要があります。

MySQL対その他のデータベース:オプションの比較MySQL対その他のデータベース:オプションの比較Apr 15, 2025 am 12:08 AM

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

MySQL Index Cardinalityはクエリパフォーマンスにどのように影響しますか?MySQL Index Cardinalityはクエリパフォーマンスにどのように影響しますか?Apr 14, 2025 am 12:18 AM

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQL:新規ユーザー向けのリソースとチュートリアルMySQL:新規ユーザー向けのリソースとチュートリアルApr 14, 2025 am 12:16 AM

MySQL学習パスには、基本的な知識、コアの概念、使用例、最適化手法が含まれます。 1)テーブル、行、列、SQLクエリなどの基本概念を理解します。 2)MySQLの定義、作業原則、および利点を学びます。 3)インデックスやストアドプロシージャなどの基本的なCRUD操作と高度な使用法をマスターします。 4)インデックスの合理的な使用や最適化クエリなど、一般的なエラーのデバッグとパフォーマンス最適化の提案に精通しています。これらの手順を通じて、MySQLの使用と最適化を完全に把握できます。

実際のmysql:例とユースケース実際のmysql:例とユースケースApr 14, 2025 am 12:15 AM

MySQLの実際のアプリケーションには、基本的なデータベース設計と複雑なクエリの最適化が含まれます。 1)基本的な使用法:ユーザー情報の挿入、クエリ、更新、削除など、ユーザーデータの保存と管理に使用されます。 2)高度な使用法:eコマースプラットフォームの注文や在庫管理など、複雑なビジネスロジックを処理します。 3)パフォーマンスの最適化:インデックス、パーティションテーブル、クエリキャッシュを使用して合理的にパフォーマンスを向上させます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター