ホームページ >テクノロジー周辺機器 >AI >機械学習 | PyTorch の簡潔なチュートリアル パート 2
前回の記事 「PyTorch 簡潔なチュートリアル パート 1」 に引き続き、多層パーセプトロン、畳み込みニューラル ネットワーク、LSTMNet について学習していきます。
多層パーセプトロンは単純なニューラル ネットワークであり、深層学習の重要な基盤です。ネットワークに 1 つ以上の隠れ層を追加することで、線形モデルの制限を克服します。具体的な図は次のとおりです:
import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, output_dim, bias=False),)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.Adam(model.parameters())batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1) 上記のコードは単層ニューラル ネットワークのコードに似ていますが、異なる点は build_model が層を構築することです。 3 つの線形層と 2 つの ReLU 活性化関数のニューラル ネットワーク モデルを含む:
(2) ReLU 活性化関数とは何ですか? ReLU (Rectified Linear Unit) 活性化関数は、深層学習とニューラル ネットワークで一般的に使用される活性化関数です。ReLU 関数の数式は次のとおりです: f(x) = max(0, x) (x は入力値)。 ReLU関数の特徴は、入力値が0以下の場合は出力が0になり、入力値が0より大きい場合は出力が入力値と同じになることです。簡単に言えば、ReLU 関数は負の部分を 0 に抑制し、正の部分を変更しないままにします。ニューラル ネットワークにおける ReLU 活性化関数の役割は、ニューラル ネットワークが複雑な非線形関係に適合できるように非線形要素を導入することであり、同時に、ReLU 関数は他の活性化関数 (たとえば、 Sigmoid または Tanh として)、その他の利点;
(3) Dropout 層とは何ですか?ドロップアウト層は、過学習を防ぐためにニューラル ネットワークで使用される技術です。トレーニング プロセス中に、ドロップアウト層は一部のニューロンの出力をランダムに 0 に設定します。つまり、これらのニューロンを「破棄」します。この目的は、ニューロン間の相互依存性を軽減し、それによってネットワークの汎化能力を向上させることです。
(4)print("エポック %d, コスト = %f, acc = %.2f%%" % (i 1, コスト / バッチ数, 100. * np.mean(predY == teY ) )) 最後に、現在のトレーニング ラウンド、損失値、および acc を出力します。上記のコード出力は次のとおりです:
...Epoch 91, cost = 0.011129, acc = 98.45%Epoch 92, cost = 0.007644, acc = 98.58%Epoch 93, cost = 0.011872, acc = 98.61%Epoch 94, cost = 0.010658, acc = 98.58%Epoch 95, cost = 0.007274, acc = 98.54%Epoch 96, cost = 0.008183, acc = 98.43%Epoch 97, cost = 0.009999, acc = 98.33%Epoch 98, cost = 0.011613, acc = 98.36%Epoch 99, cost = 0.007391, acc = 98.51%Epoch 100, cost = 0.011122, acc = 98.59%
最終的に同じデータ分類の方が、単一のデータ分類よりも精度が高いことがわかります。層ニューラル ネットワーク (98.59% > 97.68%)。
畳み込みニューラル ネットワーク (CNN) は、深層学習アルゴリズムです。 CNNは行列を入力すると、重要な部分とそうでない部分を区別(重み付け)することができます。他の分類タスクと比較して、CNN は高度なデータ前処理を必要とせず、十分にトレーニングされていれば行列の特性を学習できます。次の図は、プロセスを示しています。
import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistclass ConvNet(torch.nn.Module):def __init__(self, output_dim):super(ConvNet, self).__init__()self.conv = torch.nn.Sequential()self.conv.add_module("conv_1", torch.nn.Conv2d(1, 10, kernel_size=5))self.conv.add_module("maxpool_1", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_1", torch.nn.ReLU())self.conv.add_module("conv_2", torch.nn.Conv2d(10, 20, kernel_size=5))self.conv.add_module("dropout_2", torch.nn.Dropout())self.conv.add_module("maxpool_2", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_2", torch.nn.ReLU())self.fc = torch.nn.Sequential()self.fc.add_module("fc1", torch.nn.Linear(320, 50))self.fc.add_module("relu_3", torch.nn.ReLU())self.fc.add_module("dropout_3", torch.nn.Dropout())self.fc.add_module("fc2", torch.nn.Linear(50, output_dim))def forward(self, x):x = self.conv.forward(x)x = x.view(-1, 320)return self.fc.forward(x)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = trX.reshape(-1, 1, 28, 28)teX = teX.reshape(-1, 1, 28, 28)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples = len(trX)n_classes = 10model = ConvNet(output_dim=n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1) 上記のコードは、torch.nn.Module クラスを継承し、ボリューム Convolutional を表す ConvNet という名前のクラスを定義します。ニューラル ネットワークは、__init__ メソッドで 2 つのサブモジュール conv と fc を定義し、それぞれ畳み込み層と全結合層を表します。 conv サブモジュールでは、2 つの畳み込み層 (torch.nn.Conv2d)、2 つの最大プーリング層 (torch.nn.MaxPool2d)、2 つの ReLU 活性化関数 (torch.nn.ReLU)、およびドロップアウト層 (torch.nn.ドロップアウト)。 fc サブモジュールでは、2 つの線形層 (torch.nn.Linear)、ReLU 活性化関数、ドロップアウト層が定義されています;
プーリング層は CNN で重要な役割を果たします。目的は次のとおりです:
(3)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下:
...Epoch 91, cost = 0.047302, acc = 99.22%Epoch 92, cost = 0.049026, acc = 99.22%Epoch 93, cost = 0.048953, acc = 99.13%Epoch 94, cost = 0.045235, acc = 99.12%Epoch 95, cost = 0.045136, acc = 99.14%Epoch 96, cost = 0.048240, acc = 99.02%Epoch 97, cost = 0.049063, acc = 99.21%Epoch 98, cost = 0.045373, acc = 99.23%Epoch 99, cost = 0.046127, acc = 99.12%Epoch 100, cost = 0.046864, acc = 99.10%
可以看出最后相同的数据分类,准确率比多层感知机要高(99.10% > 98.59%)。
LSTMNet是使用长短时记忆网络(Long Short-Term Memory, LSTM)构建的神经网络,核心思想是引入了一个名为"记忆单元"的结构,该结构可以在一定程度上保留长期依赖信息,LSTM中的每个单元包括一个输入门(input gate)、一个遗忘门(forget gate)和一个输出门(output gate),这些门的作用是控制信息在记忆单元中的流动,以便网络可以学习何时存储、更新或输出有用的信息。
import numpy as npimport torchfrom torch import optim, nnfrom data_util import load_mnistclass LSTMNet(torch.nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(LSTMNet, self).__init__()self.hidden_dim = hidden_dimself.lstm = nn.LSTM(input_dim, hidden_dim)self.linear = nn.Linear(hidden_dim, output_dim, bias=False)def forward(self, x):batch_size = x.size()[1]h0 = torch.zeros([1, batch_size, self.hidden_dim])c0 = torch.zeros([1, batch_size, self.hidden_dim])fx, _ = self.lstm.forward(x, (h0, c0))return self.linear.forward(fx[-1])def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)train_size = len(trY)n_classes = 10seq_length = 28input_dim = 28hidden_dim = 128batch_size = 100epochs = 100trX = trX.reshape(-1, seq_length, input_dim)teX = teX.reshape(-1, seq_length, input_dim)trX = np.swapaxes(trX, 0, 1)teX = np.swapaxes(teX, 0, 1)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)model = LSTMNet(input_dim, hidden_dim, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)for i in range(epochs):cost = 0.num_batches = train_size // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[:, start:end, :], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%" %(i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1)以上这段代码通用的部分就不解释了,具体说LSTMNet类:
(2)print("第%d轮,损失值=%f,准确率=%.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))。打印出当前训练轮次的信息,其中包括损失值和准确率,以上代码的输出结果如下:
Epoch 91, cost = 0.000468, acc = 98.57%Epoch 92, cost = 0.000452, acc = 98.57%Epoch 93, cost = 0.000437, acc = 98.58%Epoch 94, cost = 0.000422, acc = 98.57%Epoch 95, cost = 0.000409, acc = 98.58%Epoch 96, cost = 0.000396, acc = 98.58%Epoch 97, cost = 0.000384, acc = 98.57%Epoch 98, cost = 0.000372, acc = 98.56%Epoch 99, cost = 0.000360, acc = 98.55%Epoch 100, cost = 0.000349, acc = 98.55%
两篇文章的from data_util import load_mnist的data_util.py代码如下:
import gzip import os import urllib.request as request from os import path import numpy as np DATASET_DIR = 'datasets/' MNIST_FILES = ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"] def download_file(url, local_path): dir_path = path.dirname(local_path) if not path.exists(dir_path): print("创建目录'%s' ..." % dir_path) os.makedirs(dir_path) print("从'%s'下载中 ..." % url) request.urlretrieve(url, local_path) def download_mnist(local_path): url_root = "http://yann.lecun.com/exdb/mnist/" for f_name in MNIST_FILES: f_path = os.path.join(local_path, f_name) if not path.exists(f_path): download_file(url_root + f_name, f_path) def one_hot(x, n): if type(x) == list: x = np.array(x) x = x.flatten() o_h = np.zeros((len(x), n)) o_h[np.arange(len(x)), x] = 1 return o_h def load_mnist(ntrain=60000, ntest=10000, notallow=True): data_dir = os.path.join(DATASET_DIR, 'mnist/') if not path.exists(data_dir): download_mnist(data_dir) else: # 检查所有文件 checks = [path.exists(os.path.join(data_dir, f)) for f in MNIST_FILES] if not np.all(checks): download_mnist(data_dir) with gzip.open(os.path.join(data_dir, 'train-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trX = loaded[16:].reshape((60000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trY = loaded[8:].reshape((60000)) with gzip.open(os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teX = loaded[16:].reshape((10000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teY = loaded[8:].reshape((10000)) trX /= 255. teX /= 255. trX = trX[:ntrain] trY = trY[:ntrain] teX = teX[:ntest] teY = teY[:ntest] if onehot: trY = one_hot(trY, 10) teY = one_hot(teY, 10) else: trY = np.asarray(trY) teY = np.asarray(teY) return trX, teX, trY, teY
以上が機械学習 | PyTorch の簡潔なチュートリアル パート 2の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。