次に、行列の乗算のプロセスについて説明します。行列の乗算は、特定の条件が満たされた場合にのみ実行できます。 2 つの行列が P と Q で、その次元が P (a x b) と Q (z x y) であると仮定すると、結果の行列は b = x の場合にのみ見つけることができます。この場合、結果として得られる行列 R の次数は (m x q) になります。
matrixMultiply(P, Q): Assume dimension of P is (a x b), dimension of Q is (z x y) Begin if b is not same as z, then exit otherwise define R matrix as (a x y) for i in range 0 to a - 1, do for j in range 0 to y – 1, do for k in range 0 to z, do R[i, j] = R[i, j] + (P[i, k] * Q[k, j]) done done done End
Suppose we have a 2x3 matrix: 4 5 6 1 2 3 The normalized matrix would be: 4/sqrt(pow(5,2) + pow(6,2)) 5/sqrt(pow(5,2) + pow(6,2)) 6/sqrt(pow(5,2) + pow(6,2)) 1/sqrt(pow(2,2) + pow(3,2)) 2/sqrt(pow(2,2) + pow(3,2)) 3/sqrt(pow(2,2) + pow(3,2))
#include <stdio.h> #include <math.h> int main() { int row, col, row1, col1; int assignMatrix[50][50], rowAdd[100] = {0}; long long int a, square[50] = {0}; double norm[50][50], k; printf("Enter size of a matrix</p><p>"); scanf("%d %d", &row, &col); printf("Enter matrix of size %dX%d</p><p>", row, col); for ( row1 = 0; row1 < row; row1++) { for (col1 = 0; col1 < col; col1++) { scanf("%d", &assignMatrix[row1][col1]); } } printf("</p><p>rows: %d cols: %d elements:</p><p>",row,col); for( row1 = 0; row1 < row; row1++) { for( col1 = 0; col1 < col; col1++) { printf("%d ", assignMatrix[row1][col1]); } printf("</p><p>"); } for (row1 = 0; row1 < row; row1++) { for (col1 = 1; col1 < col; col1++) { a = assignMatrix[r][c]; square[row1] += a * a; } printf("Sum of squares of row %d: %lld</p><p>",row1,square[row1]); } for ( row1 = 0; row1 < row; row1++ ) { k = 1.0 / sqrt(square[row1]); for( col1 = 0; col1 < col; col1++ ) { norm[row1][col1] = k * assignMatrix[row1][col1] ; } } printf("</p><p>Normalized Matrix:</p><p>"); for( row1 = 0; row1 < row; row1++) { for( col1 = 0; col1 < col; col1++) { printf("%.3lf ", norm[row1][col1]); } printf("</p><p>"); } return 0; }
Enter size of a matrix 2 3 Enter matrix of size 2X3 4 5 6 1 2 3 rows: 2 cols: 3 elements: 4 5 6 1 2 3 Sum of squares of row 0: 61 Sum of squares of row 1: 13 Normalized Matrix: 0.512 0.640 0.768 0.277 0.555 0.832 Process returned 0 (0x0) execution time : 12.446 s Press any key to continue.
以上がCプログラムでの行列の乗算と正規化の実装の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。