検索
ホームページテクノロジー周辺機器AI人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

10 月 5 日、AlphaTensor が誕生し、DeepMind は数学分野で 50 年間未解決だった数学的アルゴリズムの問​​題、つまり行列乗算を解決したと発表しました。 AlphaTensor は、行列の乗算などの数学的問題に対して、斬新で効率的で正しいことが証明されたアルゴリズムを発見した最初の AI システムになります。論文「強化学習によるより高速な行列乗算アルゴリズムの発見」は、Nature の表紙にも掲載されました。

しかし、AlphaTensor の記録は人間の数学者によって破られるまでわずか 1 週間しか残っていませんでした。

オーストリア、リンツのヨハン・ケプラー大学の研究者マヌエル・カウアーズ氏とヤコブ・モースバウアー氏は、最新の研究で、AlphaTensorの行列乗算の記録を破ったと述べている。彼らは、5×5 行列の乗算を 95 ステップで実行するメソッドを開発しました。これは、AlphaTensor の記録である 96 ステップおよび以前の記録である 98 ステップよりも 1 ステップ少ないものです。この論文のプレプリントは 10 月 13 日に arxiv に掲載されました。

人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

文書アドレス: https://arxiv.org/abs/2210.04045

論文のタイトルの「FBHHRBNRSSSHK」は、実際には DeepMind 論文の著者全員の姓の最初の文字です。この命名方法も非常に興味深いです:

人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

数学的問題の探求に終わりはない 著者が述べたように、DeepMind アルゴリズム ソリューションは「まだ物語の終わりではない」。しかし、今回のブレークスルーは、巨人、つまり AI の肩の上に立つことであり、その解決策は、DeepMind ソリューションに基づいて一連の変換を適用し、1 ステップの乗算計算を排除することであると著者は述べています。

1

AlphaTensor の 2 歩前進

まず、AlphaTensor の結果を簡単に確認してみましょう。

コンピューター サイエンスにおける多くの数学的タスクは、機械学習、コンピューター グラフィックスの作成、さまざまなシミュレーション、データ圧縮など、行列の乗算によって処理されます。コンピューターは乗算の計算が加算よりもはるかに遅いため、行列の乗算の効率がわずかに向上するだけでも大きな影響を及ぼします。数学者は何十年もの間、より効率的な行列の乗算アルゴリズムを探してきました。

1969 年、ドイツの数学者 Volker Strassen は、4×4 行列の乗算の解法を 64 ステップから 49 ステップに初めて短縮するアルゴリズムを開発し、数学界に衝撃を与えました。

ディープマインド社が今回リリースしたAIシステムAlphaTensorは、ストラッセンアルゴリズムよりも高速な新しいアルゴリズムを発見しました。デミス・ハサビス氏は、この新しいアルゴリズムには1日あたり数兆回の計算効率が10%から20%向上する可能性があると述べた。

AlphaTensor は、ゲームから数学への飛躍であり、2018 年に Deepmind によってリリースされた汎用ボードゲーム AI システムである AlphaZero をベースにしています。 AlphaTensor をトレーニングするために、Deepmind 研究チームは行列の乗算問題を 3D ボード ゲームに変換し、各ステップで新しいアルゴリズムの構成要素を生成しました。 AlphaTensor は、毎回何万もの手の中から選択して、できるだけ少ないステップで新しいアルゴリズムを生成することで報われます。ディープマインドはこれを「テンソル ゲーム」と呼んでいます。

5x5 入力行列で、AlphaTensor は Strassen のアルゴリズムと他の既知のアルゴリズムを独自に発見しました。また、古いアルゴリズムよりも効率的な新しいアルゴリズムも開発されました。

たとえば、5×5 行列の乗算 (n=4) には、以前は 80 の計算ステップが必要でしたが、AlphaTensor の新しいアルゴリズムでは 76 ステップしか必要ありません。n=5 の場合、AlphaTensor は問題を解決します。元の 98 ステップから 96 ステップに減少しました。 4×4 行列の乗算は Strassen によって 49 ステップに削減され、AlphaTensor によって 47 ステップに最適化されます。この効率は、AlphaTensor によって生成される行列乗算用の 70 以上のアルゴリズムによって実現されます。

注: AlphaTensor によって発見されたアルゴリズムの複雑さは、既知の行列乗算アルゴリズムと比較されます

さらに、AlphaTensor はハードウェア固有のアルゴリズムも開発できます。 、機械学習用。現在、Google TPU や NVIDIA V100 のアルゴリズムよりも 20% 高速に実行されると言われています。

人間が独自に乗算アルゴリズムを調整してハードウェアに適応させることは困難であるため、AlphaTensor による Strassen アルゴリズムの改良により、4×4 行列乗算の新しい上限が作成されます。 AI の進歩は、他の分野からの支援の素晴らしい証拠です。また、もともと従来のゲーム用に開発された AlphaZero システムが、領域外の数学的問題を解決できることも示しています。

2 人類は新たな一歩を踏み出します

マヌエル・カウアーズとヤコブ・モースバウアーによる最新の研究では、主に 2 つの新しい発見がありました。 4×4行列については、別の47ステップの乗算解アルゴリズムを提案しましたが、これは以前の解とは異なります;第2に、5×5行列については、95ステップの乗算ステップを必要とする解を初めて提案しました。

この記事では、著者が 2 つの行列乗算スキームを簡単に説明しますが、解アルゴリズムの探索技術をさらに詳しく紹介する正式な論文は近々出版される予定です。

4 × 4 行列の新しいスキームには、次のように合計 47 個の乗算が含まれています。

人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

#5 ×5 行列 (n=5) の 95 ステップの乗算スキームは次のとおりです。

人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。

# GPU が毎日数兆回の行列計算を実行していることを考慮すると、ステップ 98 から96 と 96 から ステップ 95 のような一見小さな増分改善によって、実際には計算効率が大幅に向上し、既存のハードウェア上で AI アプリケーションをより高速に実行できるようになります。

著者紹介:

マヌエル・カウアーズ、ヨハネス・ケプラー大学リンツ代数教授、同大学代数研究所所長人々。彼の研究対象は、コンピュータ代数、記号の和と積分、特殊関数恒等などです。

Jakob Moosbauer は、リンツのヨハネス ケプラー大学代数研究所の博士課程の学生です。

以上が人間が AI を追い抜く: DeepMind が AI を使用して行列乗算の計算速度の 50 年間の記録を破ってから 1 週間後、数学者が再び記録を破りました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。