検索
ホームページテクノロジー周辺機器AI人工知能とモノのインターネットを統合した後の応用シナリオは何ですか?

人工知能 (AI) とモノのインターネット (IoT) のテクノロジー トレンドが融合し始めており、業界はこのトレンドを人工知能 モノのインターネット (AIoT) と名付けています。人工知能はクラウドからエッジに移行し、主要市場での IoT の広範な導入を妨げている帯域幅とセキュリティの問題に対するソリューションを提供します。テクノロジー開発の歴史が将来への信頼できる指針であるならば、この収束には今後数年間で少なくともさらに 2 つの段階が起こることになるでしょう。

人工知能とモノのインターネットを統合した後の応用シナリオは何ですか?

#モノのインターネットは最近大きな関心を集めていますが、多くのアプリケーションでは 2 つの重要な疑問が生じます。 1 つはセキュリティであり、IoT デバイスからネットワークを介して流れるデータとデバイス自体の制御は、サイバー攻撃に対する適切なセキュリティに大きく依存しています。脅威が進化し続け、より強力になるにつれて、IoT 開発者はセキュリティのために警戒と緩和を継続的に強化する必要があります。同時に、多くの潜在的なユーザーは、システムとデータのセキュリティが不確実であるため、IoT テクノロジーの使用を控えています。

IoT 導入を制限する 2 つ目の問題は、処理のためにデータをクラウドに送信するために必要な帯域幅です。設置されるデバイスの数が増加し、関与するデータの量が増加するにつれて、IoT の導入は、データ収集にかかる帯域幅リソースとコストによって制約を受けるようになります。すべてのデータから価値を抽出する上で AI がますます重要な要素になるにつれて、このことはさらに懸念されるようになります。

従来のデータ処理技術がますます複雑になるにつれて、データ処理における人工知能の重要性が大幅に高まっています。大量のデータから有用な情報を抽出するための効率的なアルゴリズムの開発とコーディングには時間とアプリケーションの専門知識が必要ですが、多くの潜在的なユーザーにはそれが欠けています。また、ソフトウェアが脆弱になり、要件の変化に応じた保守や変更が困難になる可能性もあります。人工知能、特に機械学習 (ML) を使用すると、プロセッサーは、専門家の分析やソフトウェア開発に依存するのではなく、トレーニングに基づいて独自のアルゴリズムを開発して、望ましい結果を達成できます。さらに、追加のトレーニングにより、AI アルゴリズムは新しい要件に簡単に適応できます。

人工知能をエッジに移行する最新のトレンドは、これら 2 つのテクノロジーを統合することです。現在、IoT データからの情報の抽出は主にクラウドで行われていますが、情報のほとんどまたはすべてをローカルで抽出できれば、帯域幅とセキュリティの問題はそれほど重要ではありません。 IoT デバイスで人工知能が実行されている場合、大量の生データをネットワーク経由で送信する必要はほとんどなく、簡潔な結論だけを伝達する必要があります。通信トラフィックが少なくなると、ネットワーク セキュリティの強化と維持が容易になります。ローカル AI は、受信トラフィックに改ざんの兆候がないか検査することで、デバイスのセキュリティの向上にも役立ちます。

産業機械の予知保全は、AI と IoT の融合が今後も進化するアプリケーションです。

AIoT は、1980 年代にマイクロプロセッサが進化したのと同様の開発経路をたどっているようです。処理は、汎用プロセッサ、メモリ、シリアル インターフェイス ペリフェラル、パラレル インターフェイス ペリフェラルなど、さまざまなタスクを処理する個別のデバイスから始まります。これらは最終的にデバイスのタスクをシングルチップ マイクロコントローラーに統合し、その後特定のアプリケーション専用のマイクロコントローラーに進化しました。 AIoT も同じ道をたどるようです。

現在、AIoT 設計では、汎用の AI アクセラレーションと AI ミドルウェアによって補完されたプロセッサが使用されています。 AIアクセラレーションを搭載したプロセッサも登場し始めている。歴史が繰り返されるとすれば、AIoT の次の段階は、特定のアプリケーションに合わせてカスタマイズされた AI 強化プロセッサの進化となるでしょう。

カスタム デバイスが経済的に実行可能であるためには、対象に関連するさまざまなアプリケーションの共通のニーズを満たす必要があります。そのようなアプリケーションはすでに目に見え始めています。そのようなトピックの 1 つは予知保全です。人工知能と産業用機械の IoT センサーを組み合わせることで、ユーザーは機器の故障の前兆である振動や消費電流の異常なパターンを特定できるようになります。 AI をセンサ​​ー デバイスのローカルに配置する利点には、データ帯域幅と遅延の削減、デバイスの応答をネットワーク接続から分離できることが含まれます。専用の予知保全 AIoT デバイスは、巨大な市場にサービスを提供します。

2 番目のトピックは音声制御です。 Siri や Alexa などの音声アシスタントの人気により、消費者はさまざまなデバイスの音声制御機能を求めるようになりました。専用の音声制御 AIoT デバイスは、帯域幅と遅延の問題を解決し、不安定な接続時の機能を確保するのに役立ちます。今日、このようなデバイスの潜在的な用途の数は驚くほど増えています。

特殊な AIoT デバイスで対処すべき潜在的なトピックは他にもあります。産業安全やビル管理のための環境センシングもその 1 つです。化学プロセス管理も別の問題です。 3番目は自動運転車システムだ。 4 番目のタイプは、特定のターゲットを識別するカメラです。今後もさらに多くのことが起こることは間違いありません。

人工知能テクノロジーは今後も存続するようであり、次のステップは、処理テクノロジーと同様に、主要市場向けの専用機器の開発となるでしょう。これに加えて、業界では、AIoT の利点をより多くの小規模な市場に効果的に届けることができるように、アプリケーションに応じてカスタマイズできる構成可能な AI アクセラレーターを開発する可能性が最も高くなります。

克服すべき技術的な課題はまだたくさんあります。デバイスのサイズと消費電力は常に重要な問題であり、それらを解決するには AI がさらに取り組む必要があります。 AI を使用すると、開発ツールはアプリケーション開発作業を簡素化するためにさらに多くのことを行うことができます。開発者は、アプリ開発の代替アプローチとして人工知能についてさらに学ぶ必要があります。しかし、歴史が何らかの指針となるとすれば、これらの課題はすぐに克服されるでしょう。

以上が人工知能とモノのインターネットを統合した後の応用シナリオは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Huggingface smollmであなたの個人的なAIアシスタントを構築する方法Huggingface smollmであなたの個人的なAIアシスタントを構築する方法Apr 18, 2025 am 11:52 AM

オンデバイスAIの力を活用:個人的なチャットボットCLIの構築 最近では、個人的なAIアシスタントの概念はサイエンスフィクションのように見えました。 ハイテク愛好家のアレックスを想像して、賢くて地元のAI仲間を夢見ています。

メンタルヘルスのためのAIは、スタンフォード大学でのエキサイティングな新しいイニシアチブによって注意深く分析されますメンタルヘルスのためのAIは、スタンフォード大学でのエキサイティングな新しいイニシアチブによって注意深く分析されますApr 18, 2025 am 11:49 AM

AI4MHの最初の発売は2025年4月15日に開催され、有名な精神科医および神経科学者であるLuminary Dr. Tom Insel博士がキックオフスピーカーを務めました。 Insel博士は、メンタルヘルス研究とテクノでの彼の傑出した仕事で有名です

2025年のWNBAドラフトクラスは、成長し、オンラインハラスメントの成長と戦いに参加します2025年のWNBAドラフトクラスは、成長し、オンラインハラスメントの成長と戦いに参加しますApr 18, 2025 am 11:44 AM

「私たちは、WNBAが、すべての人、プレイヤー、ファン、企業パートナーが安全であり、大切になり、力を与えられたスペースであることを保証したいと考えています」とエンゲルバートは述べ、女性のスポーツの最も有害な課題の1つになったものに取り組んでいます。 アノ

Pythonビルトインデータ構造の包括的なガイド-AnalyticsVidhyaPythonビルトインデータ構造の包括的なガイド-AnalyticsVidhyaApr 18, 2025 am 11:43 AM

導入 Pythonは、特にデータサイエンスと生成AIにおいて、プログラミング言語として優れています。 大規模なデータセットを処理する場合、効率的なデータ操作(ストレージ、管理、アクセス)が重要です。 以前に数字とstをカバーしてきました

Openaiの新しいモデルからの代替案からの第一印象Openaiの新しいモデルからの代替案からの第一印象Apr 18, 2025 am 11:41 AM

潜る前に、重要な注意事項:AIパフォーマンスは非決定論的であり、非常にユースケース固有です。簡単に言えば、走行距離は異なる場合があります。この(または他の)記事を最終的な単語として撮影しないでください。これらのモデルを独自のシナリオでテストしないでください

AIポートフォリオ| AIキャリアのためにポートフォリオを構築する方法は?AIポートフォリオ| AIキャリアのためにポートフォリオを構築する方法は?Apr 18, 2025 am 11:40 AM

傑出したAI/MLポートフォリオの構築:初心者と専門家向けガイド 説得力のあるポートフォリオを作成することは、人工知能(AI)と機械学習(ML)で役割を確保するために重要です。 このガイドは、ポートフォリオを構築するためのアドバイスを提供します

エージェントAIがセキュリティ運用にとって何を意味するのかエージェントAIがセキュリティ運用にとって何を意味するのかApr 18, 2025 am 11:36 AM

結果?燃え尽き症候群、非効率性、および検出とアクションの間の隙間が拡大します。これは、サイバーセキュリティで働く人にとってはショックとしてはありません。 しかし、エージェントAIの約束は潜在的なターニングポイントとして浮上しています。この新しいクラス

Google対Openai:学生のためのAIの戦いGoogle対Openai:学生のためのAIの戦いApr 18, 2025 am 11:31 AM

即時の影響と長期パートナーシップ? 2週間前、Openaiは強力な短期オファーで前進し、2025年5月末までに米国およびカナダの大学生にChatGpt Plusに無料でアクセスできます。このツールにはGPT ‑ 4o、Aが含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。