サイバー攻撃の脅威は最近劇的に増加しており、従来の対策では効果が不十分であるように思えます。
このため、サイバーセキュリティにおけるディープラーニングは急速に進歩しており、サイバーセキュリティのすべての問題を解決する鍵を握る可能性があります。
ネットワーク セキュリティにおけるディープ ラーニングの応用
ネットワーク セキュリティ業界は多くの課題に直面しており、ディープ ラーニング テクノロジはその救世主となる可能性があります。
行動分析
あらゆる企業にとって、ディープ ラーニング ベースのセキュリティ戦略は、ユーザーのアクティビティと習慣を追跡し、調査することを目的としています。これはセキュリティ メカニズムを無効にし、シグナルやアラートをトリガーしない場合があるため、ネットワークをターゲットとする従来の悪意のある動作よりも検出が困難です。たとえば、内部関係者攻撃は、従業員が外部からシステムに侵入するのではなく、正当なアクセスを悪意のある目的に使用する場合に発生し、そのような攻撃に直面すると多くのネットワーク保護システムが無効になります。
これらの攻撃に対する効果的な防御手段の 1 つは、ユーザーおよびエンティティ行動分析 (UEBA) です。一定期間の調整後、従業員の典型的な行動パターンを学習し、異常時のシステムへのアクセスや警告音など、内部関係者攻撃の可能性がある不審なアクティビティを特定できるようになります。
侵入検知
侵入検知および防御システム (IDS/IPS) は、疑わしいネットワーク アクティビティを特定し、ハッカーによるアクセスを阻止し、ユーザーに通知します。多くの場合、それらはよく知られたシグネチャと一般的な攻撃形式を持っています。これは、データ侵害などのリスクから保護するのに役立ちます。
以前は、ML アルゴリズムがこの操作を処理していました。ただし、これらのアルゴリズムにより、システムはいくつかの誤検知を生成し、セキュリティ チームの仕事を骨の折れるものにし、すでに過度の疲労を増大させます。深層学習、畳み込みニューラル ネットワーク、リカレント ニューラル ネットワーク (RNN) を使用すると、トラフィックをより正確に分析し、誤った警告の数を減らし、セキュリティ チームが悪意のあるネットワーク アクティビティと正規のネットワーク アクティビティを区別できるように支援することで、よりスマートな ID/IP システムを開発できます。
マルウェアへの対処
一般的なファイアウォールなどの従来のマルウェア ソリューションは、シグネチャ ベースの検出テクノロジを使用してマルウェアを検出します。この企業は既知のリスクのデータベースを維持しており、最近出現した新しい危険を含めて定期的に更新されます。このアプローチは基本的な脅威に対しては効果的ですが、より複雑な脅威に対しては効果的ではありません。深層学習アルゴリズムは、既知のシグネチャや典型的な攻撃手法の記憶に依存しないため、より複雑な脅威を識別できます。代わりに、システムに慣れ、マルウェアまたは悪意のある活動の兆候である可能性のある奇妙な動作が見られます。
電子メールの監視
あらゆる形態のサイバー犯罪を阻止するには、従業員の公式電子メール アカウントを監視することが重要です。たとえば、フィッシング攻撃は、従業員に電子メールを送信して機密情報を要求することによって行われることがよくあります。ディープラーニングとサイバーセキュリティ ソフトウェアを使用すると、この種の攻撃を防ぐことができます。自然言語処理を使用して、電子メールに不審なアクティビティがないかチェックできます。
概要
企業が対処しなければならない多数のリスクに対処するには自動化が不可欠ですが、従来の機械学習では限界があり、望ましい結果を得るには依然として多くの調整と人間の関与が必要です。結果。サイバーセキュリティにおけるディープラーニングは、継続的な改善と学習を超えて、危険を予測し、発生する前に阻止することができます。
以上がディープラーニングがサイバーセキュリティにどのように役立つことが証明されるかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

オンデバイスAIの力を活用:個人的なチャットボットCLIの構築 最近では、個人的なAIアシスタントの概念はサイエンスフィクションのように見えました。 ハイテク愛好家のアレックスを想像して、賢くて地元のAI仲間を夢見ています。

AI4MHの最初の発売は2025年4月15日に開催され、有名な精神科医および神経科学者であるLuminary Dr. Tom Insel博士がキックオフスピーカーを務めました。 Insel博士は、メンタルヘルス研究とテクノでの彼の傑出した仕事で有名です

「私たちは、WNBAが、すべての人、プレイヤー、ファン、企業パートナーが安全であり、大切になり、力を与えられたスペースであることを保証したいと考えています」とエンゲルバートは述べ、女性のスポーツの最も有害な課題の1つになったものに取り組んでいます。 アノ

導入 Pythonは、特にデータサイエンスと生成AIにおいて、プログラミング言語として優れています。 大規模なデータセットを処理する場合、効率的なデータ操作(ストレージ、管理、アクセス)が重要です。 以前に数字とstをカバーしてきました

潜る前に、重要な注意事項:AIパフォーマンスは非決定論的であり、非常にユースケース固有です。簡単に言えば、走行距離は異なる場合があります。この(または他の)記事を最終的な単語として撮影しないでください。これらのモデルを独自のシナリオでテストしないでください

傑出したAI/MLポートフォリオの構築:初心者と専門家向けガイド 説得力のあるポートフォリオを作成することは、人工知能(AI)と機械学習(ML)で役割を確保するために重要です。 このガイドは、ポートフォリオを構築するためのアドバイスを提供します

結果?燃え尽き症候群、非効率性、および検出とアクションの間の隙間が拡大します。これは、サイバーセキュリティで働く人にとってはショックとしてはありません。 しかし、エージェントAIの約束は潜在的なターニングポイントとして浮上しています。この新しいクラス

即時の影響と長期パートナーシップ? 2週間前、Openaiは強力な短期オファーで前進し、2025年5月末までに米国およびカナダの大学生にChatGpt Plusに無料でアクセスできます。このツールにはGPT ‑ 4o、Aが含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
