CNNはその優れた性能から、近年、コンピュータビジョンや自然言語処理などのさまざまな分野の研究者に愛用されています。しかし、CNN は「ブラック ボックス」モデルです。つまり、モデルの学習内容や意思決定プロセスを人間が理解できる方法で抽出して表現することが難しいため、予測の信頼性や実用化には限界があります。したがって、CNN の解釈可能性はますます注目を集めており、研究者は、特徴の視覚化、ネットワーク診断、ネットワーク アーキテクチャの調整を使用して CNN の学習メカニズムの説明を支援し、それによってこの「ブラック ボックス」を透明化しようとしています。人間は意思決定プロセスを理解し、検出し、改善することができます。
最近、北京大学、東方工科大学、南方科学技術大学、彭城研究所などの研究チームが、意味論的に解釈可能な人工知能を提案しました。 (セマンティック 説明可能な AI (S-XAI) の研究フレームワーク は、CNN の学習メカニズムをセマンティック レベルから説明し、猫と犬の二項分類問題を例として、モデルが猫をどのように学習するかを鮮やかに明らかにします。カテゴリー的には「猫とは何か」という概念。
この研究は、CNN が同じカテゴリのサンプルから学習した 共通の特徴 に焦点を当て、人間が理解できる意味概念を抽出し、CNN レベルの説明の意味論を提供します。 。これに基づいて、この研究ではまず、サンプル内の意味要素の出現確率を特徴付けるために「意味確率」という概念を提案しました。実験の結果、S-XAI はバイナリ分類タスクと多分類タスクの両方で、共通の特徴と抽象的で超現実的だが識別可能な意味論的概念をうまく抽出できることが示されており、信頼性評価や意味論的サンプル検索において幅広い応用が期待されています。
この研究は「畳み込みニューラルネットワークの意味解釈:何が猫を猫にするのか?」というタイトルで、2022年10月10日に「Advanced Science」に掲載されました。
紙のリンク: https://onlinelibrary.wiley.com/doi/10.1002/advs.202204723
コードリンク: https://github.com/woshixuhao/semantic-explainable-AI
モデル効果これまでの単一サンプルの可視化研究とは異なり、S-XAI はグループサンプルの 共通の特徴 を抽出して可視化することで、 グローバルな解釈可能性。 S-XAI は、さらに抽象化された意味空間と計算された意味確率に基づいて、CNN の意思決定ロジックに対する人間が理解できる意味説明を自動的に生成し、意味レベルから意思決定の信頼性を評価できます。
図 1 に示すように、猫と犬の分類問題では、同じ猫を 3 つの角度から撮影した写真に対して、S-XAI が対応する意味論的確率レーダー マップを自動的に生成し、そのマップを説明します。声明。ニューラル ネットワークはすべて、これらの写真を 90% 以上の確率で猫として識別しましたが、S-XAI は、これらの写真間の違いを反映して、意味論的な確率からより多くの解釈情報を提供しました。たとえば、正面画像の場合、S-XAI 氏の説明は「私はこれが猫であると確信しています。主に、明らかに猫の目と鼻である鮮やかな目と鼻を持っているからです。同時に、生き生きとした足を持っており、これは猫の足のようです。」 この説明は、高い信頼性を示しています。横からの画像については、S-XAIの説明は「主に目があるのでおそらく猫です。猫の目かもしれませんが、足が少しわかりにくいです。」猫の後ろからの画像については、いずれもありません意味確率は明白であり、S-XAI の解釈は「猫かもしれないが、よくわかりません。」一方、犬の写真の場合、S-XAI の解釈は「猫であることは確かです」となります。 「犬です。主に、明らかに犬のものである生き生きとした目と鼻を持っているからです。ただし、足は少し分かりにくいですが。」
実際、犬の上部は体が覆われて足だけが見えるため、人間でも猫なのか犬なのか見分けるのが難しい。 S-XAI によって提供される意味論的な説明はより正確で人間の認識と一致しており、人間がニューラル ネットワークのカテゴリ認識ロジックを意味論的レベルからよりよく理解できるようになっていることがわかります。
#図 1. S-XAI によって自動生成された意味論的確率レーダー チャートと説明ステートメント
##同時に、S-XAI にはセマンティック サンプル検索における幅広い応用の可能性もあります。図 2 に示すように、多数の画像から特定の意味的特徴を持つ画像をフィルタリングする必要がある場合、S-XAI は意味的確率を通じてフィルタリングする高速かつ正確な方法を提供します。意味確率の計算にはニューラル ネットワークの順方向操作 (つまり、予測) のみが含まれることを考慮すると、このプロセスは非常に高速です。
#図 2. セマンティック サンプル検索の例
##この研究で、研究者らは、S-XAI が複数分類タスクで優れたスケーラビリティを備えていることも証明しました。図 3 に示すように、Mini-ImageNet データ セット (100 の動物カテゴリを含む) を例にとると、S-XAI はさまざまなカテゴリのデータ (鳥、ヘビ、カニ、魚など) から明確に識別可能な画像を抽出できます。 ) 共通の特徴と意味空間、および対応する意味論的な説明を生成します。
# 図 3. 複数分類タスクにおける S-XAI のパフォーマンス。
原則と方法 現在、モデルの解釈可能性を向上させるための一般的なアイデアは、主に視覚化とモデル介入の 2 つのカテゴリに分類されます。視覚化手法では、CNN 内の特徴マップ、フィルター、またはヒート マップを視覚化し、特定のサンプルに直面するときにネットワークが注目する特徴を理解します。この方法の制限は、局所的な解釈可能性を得るために単一のサンプルから個々の特徴を抽出することしかできず、同じ種類のデータに直面した場合にモデルの全体的な意思決定ロジックを理解するのに役立つことができないことです。モデル介入法は、いくつかの既存の高度に解釈可能なモデル (ツリー モデルなど) をニューラル ネットワークのアーキテクチャに統合して、モデルの解釈可能性を向上させます。このタイプの方法にはグローバルな解釈が可能であるという利点がありますが、多くの場合モデルの再トレーニングが必要となり、解釈コストが高くなり、一般化や応用には役立ちません。
人間の認知モデルに触発された S-XAI では、研究者らはセマンティック レベルのカテゴリー学習メカニズム (図 4) から CNN を説明するための新しい説明戦略を採用しました。自然界では、同じタイプの物体は、特定の類似した共通の特徴を持っていることがよくあり、それがカテゴリ認識の重要な基礎を形成します。たとえば、猫はさまざまな形をしていますが、いくつかの共通の特徴 (ひげ、鼻、目関連の特徴など) を共有しているため、人間は猫を猫であるとすぐに識別できます。研究者らは実験で、CNNのカテゴリー学習メカニズムが人間と似ていることを発見した。
#図 4. 意味解釈可能な人工知能研究フレームワーク
行中心サンプル圧縮 と呼ばれるテクノロジーが、CNN が学習した共通特徴から同じカテゴリのサンプルを抽出するためにこの研究で使用されました。従来の主成分分析とは異なり、行中心サンプル圧縮は、サンプル空間内の CNN の多数のサンプルによって取得された特徴マップの次元を削減し、それによって少数の主成分を CNN によって学習された共通の特徴として抽出します。抽出された共通の特徴をより明確にするために、サンプルはスーパーピクセルのセグメンテーションと遺伝的アルゴリズムを通じて干渉を低減する最適なスーパーピクセルの組み合わせを見つけました。抽出された共通特徴は視覚的に表示されます (図 5)。
図 5. 共通特徴の抽出パス VGG-19 ネットワーク アーキテクチャにおける猫と犬の分類問題を例に挙げると、猫の場合 犬と犬のカテゴリ データから抽出されたさまざまな主成分を図 6 に示します。この図から、異なる主成分が異なるレベルで識別可能な特徴を示すことが明確にわかります。第一主成分は完全な顔の特徴を示し、第二主成分はひげ、目、鼻などの散在する意味概念を示し、第三主成分は主に毛皮の特徴を示すことが明らかです。これらの主成分が示す特性は超自然的であること、つまり、どのサンプルにも属さず、同じカテゴリのすべてのサンプルに共通する特性を反映していることは言及する価値があります。 #図 6. 猫と犬のカテゴリ データから抽出されたさまざまな主成分の視覚化結果 抽出された共通特徴に基づいて、研究者らはサンプル内の意味情報をマスクし、主成分の変化を比較して、混合された意味概念をさらに分離し、各意味概念に対応する意味ベクトルを抽出し、抽象化しました。意味空間。ここで研究者らは、目や鼻などの人間が理解できる意味論的概念を使用し、抽象化された意味論的空間を視覚化しました。意味空間の抽出に成功した後、研究者らはサンプル内の意味要素の出現確率を特徴付ける「意味確率」の概念を定義し、CNNの意味レベルの説明に定量的な分析手法を提供した。 図 7 に示すように、明確に識別可能な意味概念 (明るい目、小さな鼻) が意味空間に表示されます。これは、意味空間が CNN から正常に抽出されたことを示しています。 CNN がカテゴリデータから学習した意味情報を示します。同時に、研究者らは、CNN のセマンティクスの理解が人間の理解とは多少異なることを発見しました。CNN が学習する「セマンティクス」は、必ずしも人間によって合意された「セマンティクス」ではありません。ニューラル ネットワークのセマンティクスは、もっと効率的。たとえば、研究者らは、猫の場合、CNN が猫の鼻とひげを全体的な意味論として扱うことが多く、より効果的である可能性があることを発見しました。同時に、CNN はセマンティクス間の関連性についても学習しました。たとえば、猫の目と鼻は同時に現れることがよくあります。この点については、さらに詳細な研究が必要です。 # 図 7. CNN から抽出された意味ベクトルと視覚化された意味空間 (上: 猫の目の空間、下: 猫の鼻の空間)#要約と展望 本質的に、S-XAI は知識の発見に似ています。知識発見は、ニューラル ネットワークから共通の物理法則を反映する関数項を見つけることを目的とし、S-XAI は、CNN からサンプルの共通の特性を反映する意味空間を見つけることを目的としています。両方の中心的なアイデアは、共通点を見つけてそれらを表現することです。人間に理解できるようにすることが可能であることについて。
以上がなぜ猫なのか? Explainable AI は CNN の認識メカニズムを意味レベルから理解しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
