フェデレーテッド ラーニングは機械学習の非常に人気のある分野であり、データを転送せずに複数の当事者によるモデルの共同トレーニングを指します。フェデレーテッド ラーニングの発展に伴い、FATE、FedML、PaddleFL、TensorFlow-Federated などのフェデレーテッド ラーニング システムが際限なく登場しています。ただし、ほとんどのフェデレーテッド ラーニング システムは、ツリー モデルのフェデレーテッド ラーニング トレーニングをサポートしていません。ニューラル ネットワークと比較して、ツリー モデルは、トレーニングが高速で、解釈可能性が高く、表形式のデータに適しているという特徴があります。ツリー モデルには、金融、医療、インターネット、その他の分野 (広告の推奨、株価予測など) における幅広い応用シナリオがあります。
意思決定木の代表的なモデルは、Gradient Boosting Decision Tree (GBDT) です。 1 つのツリーの予測能力には限界があるため、GBDT はブースティング法を通じて複数のツリーを直列にトレーニングし、最終的に各ツリーを現在の予測値とラベル値の残差に適合させることで良好な予測効果を実現します。代表的なGBDTシステムにはXGBoost、LightGBM、CatBoost、ThunderGBMなどがありますが、その中でもXGBoostはKDDカップ優勝チームに何度も採用されています。ただし、これらのシステムはどれも、フェデレーテッド ラーニング シナリオでの GBDT トレーニングをサポートしていません。最近、シンガポール国立大学と清華大学の研究者は、ツリー モデルのトレーニングに焦点を当てた新しい連合学習システム FedTree を提案しました。
- 論文のアドレス: https://github.com/Xtra-Computing/FedTree/blob/main/FedTree_draft_paper。 pdf
- プロジェクト アドレス: https://github.com/Xtra-Computing/FedTree
FedTree システムの紹介FedTree のアーキテクチャ図を図 1 に示します。インターフェース、環境、フレームワーク、プライバシー保護、モデルの合計 5 つのモジュールがあります。
#図 1: FedTree システム アーキテクチャ図
インターフェース: FedTree は、コマンド ライン インターフェースと Python インターフェースの 2 つのインターフェースをサポートします。ユーザーはパラメーター (参加者数、フェデレーション シナリオなど) を指定するだけで、1 行のコマンドでトレーニングのために FedTree を実行できます。 FedTree の Python インターフェイスは scikit-learn と互換性があり、トレーニングと予測のために fit() および detect() を呼び出すことができます。
環境: FedTree は、単一マシン上でのフェデレーテッド ラーニングのシミュレートされたデプロイメントと、複数のマシン上での分散フェデレーションのデプロイメントをサポートしています。機械の勉強。スタンドアロン環境では、FedTree はデータを複数のサブデータ セットに分割することをサポートしており、各サブデータ セットは参加者としてトレーニングされます。マルチマシン環境では、FedTree は各マシンを参加者としてサポートし、マシンは gRPC を介して通信します。同時に、FedTree は CPU に加えて、トレーニングを高速化するための GPU の使用をサポートします。
フレームワーク: FedTree は、水平および垂直フェデレーテッド ラーニング シナリオで GBDT のトレーニングをサポートします。水平シナリオでは、異なる参加者が異なるトレーニング サンプルと同じ特徴空間を持ちます。垂直シナリオでは、異なる参加者が異なる特徴空間と同じトレーニング サンプルを持ちます。パフォーマンスを確保するために、どちらのシナリオでも、複数の関係者が各ノードのトレーニングに参加します。さらに、FedTree はアンサンブル学習もサポートしています。アンサンブル学習では、参加者がツリーを並行してトレーニングし、それらを集約して参加者間の通信オーバーヘッドを削減します。
プライバシー: トレーニング中に渡された勾配によってトレーニング データに関する情報が漏洩する可能性があるため、FedTree は別のプライバシーを提供します。 - 勾配情報をさらに保護するための保存方法には、準同型暗号化 (HE) と安全な集約 (SA) が含まれます。同時に、FedTree は、最終的なトレーニング済みモデルを保護するための差分プライバシーを提供します。
モデル: ツリーのトレーニングに基づいて、FedTree はブースティング/バギング手法/ランダム フォレストによる GBDT のトレーニングをサポートします。 。さまざまな損失関数を設定することにより、FedTree によってトレーニングされたモデルは、分類や回帰などのさまざまなタスクをサポートします。 実験表 1 は、a9a、ブレスト、クレジットに関するさまざまなシステムの AUC とアワビの RMSE、FedTree のモデル効果、およびすべてのデータを使用したトレーニング GBDT (XGBoost、ThunderGBM) をまとめたものです。 FATE の SecureBoost (SBT) はほぼ同じです。さらに、プライバシー保護ポリシー SA および HE はモデルのパフォーマンスに影響を与えません。 #表 1: さまざまなシステムのモデル効果の比較 表 2 は、さまざまなシステムでの各ツリーのトレーニング時間 (単位: 秒) をまとめたもので、FedTree が FATE よりもはるかに高速であり、水平フェデレーションで 100 倍を超える加速率を達成できることがわかります。学習シナリオ。 #表 2: さまざまなシステムでの各ツリーのトレーニング時間の比較 研究の詳細については、FedTree の元の論文を参照してください。
以上がデシジョンツリー専用に設計されたシンガポール国立大学と清華大学が共同で高速かつ安全な新しい連合学習システムを提案の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Microsoft PowerBIチャートでデータ視覚化の力を活用する 今日のデータ駆動型の世界では、複雑な情報を非技術的な視聴者に効果的に伝えることが重要です。 データの視覚化は、このギャップを橋渡しし、生データを変換するi

エキスパートシステム:AIの意思決定力に深く飛び込みます 医療診断から財務計画まで、あらゆることに関する専門家のアドバイスにアクセスできることを想像してください。 それが人工知能の専門家システムの力です。 これらのシステムはプロを模倣します

まず第一に、これがすぐに起こっていることは明らかです。さまざまな企業が、現在AIによって書かれているコードの割合について話しており、これらは迅速なクリップで増加しています。すでに多くの仕事の移動があります

映画業界は、デジタルマーケティングからソーシャルメディアまで、すべてのクリエイティブセクターとともに、技術的な岐路に立っています。人工知能が視覚的なストーリーテリングのあらゆる側面を再構築し始め、エンターテイメントの風景を変え始めたとき

ISROの無料AI/MLオンラインコース:地理空間技術の革新へのゲートウェイ インド宇宙研究機関(ISRO)は、インドのリモートセンシング研究所(IIRS)を通じて、学生と専門家に素晴らしい機会を提供しています。

ローカル検索アルゴリズム:包括的なガイド 大規模なイベントを計画するには、効率的なワークロード分布が必要です。 従来のアプローチが失敗すると、ローカル検索アルゴリズムは強力なソリューションを提供します。 この記事では、Hill ClimbingとSimulについて説明します

このリリースには、GPT-4.1、GPT-4.1 MINI、およびGPT-4.1 NANOの3つの異なるモデルが含まれており、大規模な言語モデルのランドスケープ内のタスク固有の最適化への動きを示しています。これらのモデルは、ようなユーザー向けインターフェイスをすぐに置き換えません

Chip Giant Nvidiaは、月曜日に、AI Supercomputersの製造を開始すると述べました。これは、大量のデータを処理して複雑なアルゴリズムを実行できるマシンを初めて初めて米国内で実行します。発表は、トランプSI大統領の後に行われます


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター
