検索
ホームページデータベースmysql チュートリアルmysqlのディープページング問題を解決する方法

この記事では、mysql に関する関連知識を提供し、主に mysql ディープ ページングの問題に対するエレガントなソリューションを紹介します。この記事では、mysql テーブルに大量のデータがある場合にディープ ページングを最適化する方法について説明します。ページネーションの問題、および遅い SQL の問題を最適化する最近の事例の疑似コードを添付します。

mysqlのディープページング問題を解決する方法

推奨学習: mysql ビデオ チュートリアル

日々の需要の開発プロセスでは、制限については誰もがよく知っていると思いますが、制限を使用すると、オフセット (オフセット) が非常に大きい場合、クエリの効率がどんどん遅くなることがわかります。最初の制限が 2000 の場合、必要なデータのクエリに 200 ミリ秒かかる場合がありますが、制限が 4000 オフセット 100000 の場合、クエリの効率はすでに約 1 秒を必要としていることがわかります。ますます悪くなり、遅い。

概要

この記事では、mysql テーブルに大量のデータがある場合にディープ ページング問題を最適化する方法について説明し、遅い SQL 問題を最適化する最近の事例の疑似コードを添付します。 。

1. ディープページングの制限に関する問題の説明

最初にテーブル構造を見てみましょう (例を挙げるだけです。テーブル構造は不完全で、無駄なフィールドは表示されません)

CREATE TABLE `p2p_detail_record` (
  `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键',
  `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量',
  `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间',
  `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id',
  `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间',
  `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间',
  `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间',
  `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间',
  PRIMARY KEY (`id`),
  KEY `idx_uuid` (`uuid`),
  KEY `idx_start_time_stamp` (`start_time_stamp`) //索引,
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';

クエリしたいディープ ページング SQL が次のようになっているとします。

select * 
from p2p_detail_record ppdr 
where ppdr .start_time_stamp >1656666798000 
limit 0,2000

クエリ効率は 94 ミリ秒ですが、非常に高速です。したがって、100000 または 2000 に制限すると、クエリ効率は 1.5 秒となり、これはすでに非常に遅いことになります。


2. SQL が遅い原因の分析

##この SQL の実行計画を見てみましょう

もインデックスに到達しましたが、それでも遅いのはなぜですか?まず、mysql の関連知識ポイントを確認しましょう。

クラスター化インデックスと非クラスター化インデックス

クラスター化インデックス:

リーフ ノードにはデータの行全体が格納されます。

非クラスター化インデックス:

リーフ ノードには、データ行全体に対応する主キー値が格納されます。

#非クラスター化インデックス クエリを使用するプロセス

非クラスター化インデックスを使用して、対応するリーフ ノードを検索します。 Tree 、主キーの値を取得します。

    次に、主キーの値を取得し、
  • クラスター化インデックス ツリー
  • に戻って、対応するデータ行全体を検索します。 (
  • プロセス全体はテーブル リターンと呼ばれます)なぜこの SQL が遅いのかという質問に戻りますが、その理由は次のとおりです
1. 制限このステートメントは、最初の n 行のオフセットをスキャンし、最初のオフセット行を破棄し、次の n 行のデータを返します。つまり、

limit 100000,10

は 100010 行をスキャンしますが、

limit 0,10 は 10 行のみをスキャンします。ここでは 100010 回テーブルに戻る必要があり、テーブルを返すのに多くの時間がかかります。 ソリューションの核となるアイデア:

テーブルの戻り数を減らすために、どの主キー ID から開始するかを事前に知ることができますか?

共通ソリューション

サブクエリによる最適化

select * 
from p2p_detail_record ppdr 
where id >= (select id from p2p_detail_record ppdr2 where ppdr2 .start_time_stamp >1656666798000 limit 100000,1) 
limit 2000

同じクエリ結果は、10W から始まる 2000 番目の項目でもあり、クエリ効率は 200ms とはるかに高速です。

タグ記録方法

タグ記録方法:

実際には、前回クエリされたものをマークし、次回もう一度確認します。時間が来たら、このバーから下のスキャンを開始します。

ブックマークの効果と同様です

select * from p2p_detail_record ppdr
where ppdr.id > 'bb9d67ee6eac4cab9909bad7c98f54d4'
order by id 
limit 2000

备注:bb9d67ee6eac4cab9909bad7c98f54d4是上次查询结果的最后一条ID
タグ記録方式を使用すると、id

インデックスがヒットするため、パフォーマンスが向上します。ただし、この方法にはいくつかの

欠点があります。 1. クエリは連続したページでのみ実行でき、ページをまたいで実行することはできません。

    2.
  • continuous auto-increment
  • のようなフィールドが必要です (ID による orber を使用できます)。
  • ソリューションの比較

サブクエリ最適化による

の使用
  • 利点:
ページをまたがってクエリを実行すると、確認したいページのデータを確認できます。

欠点:

タグ記録方法 ほど効率的ではありません。 理由: たとえば、100,000 個のデータをチェックする必要がある場合、最初に非クラスター化インデックスに対応する 1000 番目のデータをクエリしてから、100,000 番目から始まる ID を取得する必要もあります。クエリ用の部分。

タグ記録方式を使用します
  • 利点:
クエリ効率は非常に安定しており、非常に高速です。

欠点:

  • 不跨页查询,
  • 需要一种类似连续自增的字段

关于第二点的说明: 该点一般都好解决,可使用任意不重复的字段进行排序即可。若使用可能重复的字段进行排序的字段,由于mysql对于相同值的字段排序是无序,导致如果正好在分页时,上下页中可能存在相同的数据。

实战案例

需求: 需要查询查询某一时间段的数据量,假设有几十万的数据量需要查询出来,进行某些操作。

需求分析 1、分批查询(分页查询),设计深分页问题,导致效率较慢。

CREATE TABLE `p2p_detail_record` (
  `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键',
  `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量',
  `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间',
  `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id',
  `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间',
  `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间',
  `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间',
  `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间',
  PRIMARY KEY (`id`),
  KEY `idx_uuid` (`uuid`),
  KEY `idx_start_time_stamp` (`start_time_stamp`) //索引,
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';

伪代码实现

//最小ID 
String  lastId = null; 
//一页的条数 
Integer pageSize = 2000; 
List<P2pRecordVo> list ;
do{   
   list = listP2pRecordByPage(lastId,pageSize);    //标签记录法,记录上次查询过的Id 
   lastId = list.get(list.size()-1).getId();       //获取上一次查询数据最后的ID,用于记录
   //对数据的操作逻辑
   XXXXX();
 }while(isNotEmpty(list));
   
<select id ="listP2pRecordByPage">  
   select * 
   from p2p_detail_record ppdr where 1=1
   <if test = "lastId != null">
   and ppdr.id > #{lastId}
   </if>
   order by id asc
   limit #{pageSize}
</select>

这里有个小优化点: 可能有的人会先对所有数据排序一遍,拿到最小ID,但是这样对所有数据排序,然后去min(id),耗时也蛮长的,其实第一次查询,可不带lastId进行查询,查询结果也是一样。速度更快。

总结

1、当业务需要从表中查出大数据量时,而又项目架构没上ES时,可考虑使用标签记录法的方式,对查询效率进行优化。

2、从需求上也应该尽可能避免,在大数据量的情况下,分页查询最后一页的功能。或者限制成只能一页一页往后划的场景。

推荐学习:mysql视频教程

以上がmysqlのディープページング問題を解決する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は脚本之家で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Innodb Redoログの役割を説明し、ログを元に戻します。Innodb Redoログの役割を説明し、ログを元に戻します。Apr 15, 2025 am 12:16 AM

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?Apr 15, 2025 am 12:15 AM

説明コマンドのキーメトリックには、タイプ、キー、行、および追加が含まれます。 1)タイプは、クエリのアクセスタイプを反映しています。値が高いほど、constなどの効率が高くなります。 2)キーは使用されているインデックスを表示し、nullはインデックスがないことを示します。 3)行はスキャンされた行の数を推定し、クエリのパフォーマンスに影響します。 4)追加の情報を最適化する必要があるというFilesortプロンプトを使用するなど、追加情報を提供します。

説明の一時的なステータスを使用し、それを回避する方法は何ですか?説明の一時的なステータスを使用し、それを回避する方法は何ですか?Apr 15, 2025 am 12:14 AM

Temporaryを使用すると、MySQLクエリに一時テーブルを作成する必要があることが示されています。これは、異なる列、またはインデックスされていない列を使用して順番に一般的に見られます。インデックスの発生を回避し、クエリを書き直し、クエリのパフォーマンスを改善できます。具体的には、expliect出力に使用を使用する場合、MySQLがクエリを処理するために一時テーブルを作成する必要があることを意味します。これは通常、次の場合に発生します。1)個別またはグループビーを使用する場合の重複排除またはグループ化。 2)Orderbyに非インデックス列が含まれているときに並べ替えます。 3)複雑なサブクエリを使用するか、操作に参加します。最適化方法には以下が含まれます。1)OrderbyとGroupB

さまざまなSQLトランザクションの分離レベル(読み取り、commited、繰り返し読み取り、シリアル化可能、シリアル化可能)とmysql/innodbの意味を説明してください。さまざまなSQLトランザクションの分離レベル(読み取り、commited、繰り返し読み取り、シリアル化可能、シリアル化可能)とmysql/innodbの意味を説明してください。Apr 15, 2025 am 12:11 AM

MySQL/INNODBは、4つのトランザクション分離レベルをサポートしています。 1.ReadunCommittedは、知らないデータを読み取ることができます。 2。読み込みは汚い読み取りを回避しますが、繰り返しのない読みが発生する可能性があります。 3. RepeatablerEadはデフォルトレベルであり、汚い読み取りと非回復不可能な読みを避けますが、幻の読み取りが発生する可能性があります。 4. Serializableはすべての並行性の問題を回避しますが、同時性を低下させます。適切な分離レベルを選択するには、データの一貫性とパフォーマンス要件のバランスをとる必要があります。

MySQL対その他のデータベース:オプションの比較MySQL対その他のデータベース:オプションの比較Apr 15, 2025 am 12:08 AM

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

MySQL Index Cardinalityはクエリパフォーマンスにどのように影響しますか?MySQL Index Cardinalityはクエリパフォーマンスにどのように影響しますか?Apr 14, 2025 am 12:18 AM

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQL:新規ユーザー向けのリソースとチュートリアルMySQL:新規ユーザー向けのリソースとチュートリアルApr 14, 2025 am 12:16 AM

MySQL学習パスには、基本的な知識、コアの概念、使用例、最適化手法が含まれます。 1)テーブル、行、列、SQLクエリなどの基本概念を理解します。 2)MySQLの定義、作業原則、および利点を学びます。 3)インデックスやストアドプロシージャなどの基本的なCRUD操作と高度な使用法をマスターします。 4)インデックスの合理的な使用や最適化クエリなど、一般的なエラーのデバッグとパフォーマンス最適化の提案に精通しています。これらの手順を通じて、MySQLの使用と最適化を完全に把握できます。

実際のmysql:例とユースケース実際のmysql:例とユースケースApr 14, 2025 am 12:15 AM

MySQLの実際のアプリケーションには、基本的なデータベース設計と複雑なクエリの最適化が含まれます。 1)基本的な使用法:ユーザー情報の挿入、クエリ、更新、削除など、ユーザーデータの保存と管理に使用されます。 2)高度な使用法:eコマースプラットフォームの注文や在庫管理など、複雑なビジネスロジックを処理します。 3)パフォーマンスの最適化:インデックス、パーティションテーブル、クエリキャッシュを使用して合理的にパフォーマンスを向上させます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。