ホームページ >バックエンド開発 >Python チュートリアル >Python の numpy モジュールの詳細な紹介

Python の numpy モジュールの詳細な紹介

WBOY
WBOY転載
2022-05-19 11:43:384198ブラウズ

この記事では、python に関する関連知識を紹介します。主に numpy モジュールに関する関連問題を紹介します。Numpy とは Numerical Python extensions の略で、文字通り Python の数値計算拡張機能を意味します。合わせて、皆さんのお役に立てれば幸いです。

Python の numpy モジュールの詳細な紹介

推奨学習: python ビデオ チュートリアル

## Numerical Python extensions の略で、文字通り Python の数値計算拡張機能を意味します。 Numpy は、Python の多くの機械学習ライブラリの依存関係であり、Numpy を通じて基本的な行列計算を実装します。 Numpy

は、高次の大規模な行列計算とベクトル計算をサポートしており、比較的豊富な関数セットも提供します。さらに、Numpy は、より現代的なプログラミング言語である Python をベースにしています。Python は、オープンソース、無料、柔軟性、学習しやすさ、優れたエンジニアリング機能により、テクノロジー界で人気があります。これは、世界の主流のプログラミングとなっています。機械学習、データ分析などの言語。 1. 配列型

numpy の配列型はライブラリの基本的なデータ型です。 type 文字通り配列を意味し、その最も重要な属性が要素と次元であることを意味します。このデータ型を使用して多次元配列を実装できます。 したがって、このデータ型を通じて、1 次元配列を使用してベクトルを表現したり、2 次元配列を使用して行列を表現したりすることで、高次元のテンソルを表現することができます。

1.1配列型の基本的な使用法

import numpy as np
# 通过np.array()方法创建一个名为array的array类型,参数是一个list
array = np.array([1, 2, 3, 4])
print(array)
# 结果为:[1 2 3 4]

# 获取array中元素的最大值
print(array.max())
# 结果为:4

# 获取array中元素的最小值
print(array.min())
# 结果为:1

# 获取array中元素的平均值
print(array.mean())
# 结果为:2.5

# 直接将array乘以2,python将每个元素都乘以2
print(array*2)
# 结果为:[2 4 6 8]

print(array+1)
# 结果为:[2 3 4 5]

print(array/2)
# 结果为:[0.5 1.  1.5 2. ]

# 将每一个元素都除以2,得到浮点数表示的结果
print(array % 2)
# 结果为:[1 0 1 0]

array_1 = np.array([1, 0, 2, 0])
# 获取该组数据中元素值最大的那个数据的首个索引,下标从0开始
print(array_1.argmax())
# 结果为:2
上記のコードを通じて、Numpy での配列型の基本的な使用法を理解できます。方法。 array は実際には、リスト パラメーターを渡すことによってオブジェクトにインスタンス化され、それによってデータがカプセル化されるクラスであることがわかります。

1.2 高次元データの処理


import numpy as np
# 创建一个二维数组,用以表示一个3行2列的矩阵
array = np.array([[1, 2], [3, 4], [5, 6]])
print(array)

# 查看数据的维度属性,下面输出结果(3,2)表示3行2列
print(array.shape)
# 结果为:(3, 2)

# 查看元素个数
print(array.size)
# 结果为:6

# 查看元素最大值的索引
print(array.argmax())
# 结果为:5

# 将shape为(3,2)的array转换为一行表示
print(array.flatten())
# 结果为:[1 2 3 4 5 6]
# 我们可以看到,flatten()方法是将多维数据“压平”为一维数组的过程

#将array数据从shape为(3,2)的形式转为(2,3)的形式
print(array.reshape(2, 3))
'''结果为:
[[1 2 3]
 [4 5 6]]'''

#将array数据从shape为(3,2)的形式转为(1,6)的形式
print(array.reshape(1, 6))
# 结果为:[[1 2 3 4 5 6]]
より高度なものは flatten() と reshape です() 関数の場合、reshape() によって返される結果は配列型であることに注意してください。

#1.3Numpy は特別な型の配列型を作成します


1.3.1 すべて 0 またはすべて 1 の配列を生成します
import numpy as np
# 生成所有元素为
array_zeros = np.zeros((2, 3, 3))
print(array_zeros)
'''结果为:
[[[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]

 [[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]]
'''
array_ones = np.ones((2, 3, 3))
print(array_ones)
'''结果为:
[[[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]

 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]]
'''
print(array_ones.shape)
# 结果为:(2, 3, 3)

注: (2, 3, 3) For を変更した場合(3, 3)

array_zeros = np.zeros((3, 3))
print(array_zeros)
'''结果为:
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
'''

3 行 3 列の配列を生成します

#1.3.2np .arrange () および np.linspace()


arange([start,] stop[, step,], dtype=None, , like=None)

指定された間隔内で均一に分布した値を返します。

値は、半開区間 ``[start, stop]`` (つまり、`start` を含み、`stop` を除く区間) 内で生成されます。 整数引数の場合、この関数は Python の組み込み関数 `range` 関数と同等ですが、リストの代わりに ndarray を返します。 整数以外のステップ サイズ (0.1 など) を使用すると、結果が一貫性を持たなくなることがよくあります。このような場合には、 `numpy.linspace` を使用することをお勧めします。 linspace(start、stop、num=50、endpoint=True、retstep=False、dtype=None、axis=0)

指定された時間間隔内で均等に分布した数値を返します。

間隔 [`start`, `stop`] で計算された、均一に分布した "num" 個のサンプルを返します。 start: シーケンスの開始値。

stop: 「endpoint」が False に設定されていない場合、シーケンスの終了値。この場合、シーケンスは最後の「num 1」を除くすべての均一に分散されたサンプルで構成され、したがって「stop」は除外されます。 「endpoint」が False の場合、ステップ サイズが変更されることに注意してください。

num=50: 生成されるサンプルの数。デフォルト値は 50 です。負ではない必要があります。

endpoint=True: true の場合、`stop` が最後のサンプルです。それ以外の場合は含まれません。デフォルトは true です。

retstep=False:如果为 True,则返回 (`samples`, `step`),其中 `step` 是样本之间的间距。

dtype=None:输出数组的类型。如果 `dtype` 没有给出,数据类型是从 `start` 和 `stop` 推断出来的。推断的 dtype 永远不会是整数;即使参数会产生一个整数数组,也会选择`float`。

因此以下代码就很容易理解了

# 生成一个array,从0递增到10,步长为1
array_arange = np.arange(10)
print(array_arange)
# 结果为:[0 1 2 3 4 5 6 7 8 9]

# 生成一个array,从0递增到10,步长为2
array_arange_1 = np.arange(0, 10, 2)
print(array_arange_1)
# 结果为:[0 2 4 6 8]

# 生成一个array,将0-10等分为5部分
array_linspace = np.linspace(0, 10, 5)
print(array_linspace)
# 结果为:[ 0.   2.5  5.   7.5 10. ]

1.4Numpy基础计算演示

import numpy as np
# 取绝对值
print(np.abs([1, -2, 3, -4]))
# [1 2 3 4]

# 求正弦值
print(np.sin(np.pi/2))
# 1.0

# 求反正切值
print(np.arctan(1))
# 0.7853981633974483

# 求e的2次方
print(np.exp(2))
# 7.38905609893065

# 求2的三次方
print(np.power(2, 3))
# 8

# 求向量[1,2]与[3,4]的点积
print(np.dot([1, 2], [3, 4]))
# 11

# 求开方
print(np.sqrt(4))
# 2.0

# 求和
print(np.sum([1, 2, 3, 4]))
# 10

# 求平均值
print(np.mean([1, 2, 3, 4]))
#2.5 

# 求标准差
print(np.std([1, 2, 3, 4]))
# 1.118033988749895

二、线性代数相关 

        前面我们已经了解到array类型及其基本操作方法,了解array类型可以表示向量、矩阵和多维张量。

        线性代数计算在科学计算领域中非常重要,因此接下来了解以下Numpy提供的线性代数操作

import numpy as np

vector_a = np.array([1, 2, 3])
vector_b = np.array([2, 3, 4])
# 定义两入向量vector_a与vector_b

m = np.dot(vector_a, vector_b)
# 将两个向量相乘,在这里也就是点乘,结果为20
print(m)

n = vector_a.dot(vector_b)
print(n)
# 将vector_a与vector_b相乘,结果为20
o = np.dot(vector_a, vector_b.T)
print(o)

'''
将一个行向量与一个列向量叉乘的结果相当于将两个行向量求点积,这里测试了dot()方法。其中array类型的T()方法表示转置。
测试结果表明:
dot()方法默认对两个向量求点积。对于符合叉乘格式的矩阵,自动进行又乘。'''

# 我们看一下下面这个例子:

matrix_a = np.array([[1, 2], [3, 4]])
# 定义一个2行2列的方阵

matrix_b = np.dot (matrix_a, matrix_a.T)
# 这里将该方阵与其转置叉乘,将结果赋予matrix_b变量
print(matrix_b)
'''结果为:
array([[5,11],
[11,25]])'''

p = np.linalg.norm([1, 2])
print(p)
# 求一个向量的范数的值,结果为2.2360679774997898
# 如果norm()方法没有指定第2个参数,则默认为求2范数

np.linalg.norm([1, -2], 1)
# 指定第2个参数值为1,即求1范数。我们在前面介绍过,1范数的结果为向量中各元素绝对值之和,结果为3.0

q = np.linalg.norm([1, 2, 3, 4], np. inf)
print(q)
# 求向量的无穷范数,其中np.inf表示正无穷,也就是向量中元素值最大的那个,其结果为4.0

r = np.linalg .norm([1, 2, 3, 4], -np.inf)
print(r)
# 同理,求负无穷范数的结果为1, 也就是向量中元素的最小值

# 求行列式
s = np.linalg.det(matrix_a)
print(s)
# -2.0000000000000004

t = np.trace(matrix_a)
print(t)
# 求矩阵matrix_a的迹,结果为5

u = np.linalg.matrix_rank(matrix_a)
# 求矩阵的秩,结果为2
print(u)

v = vector_a * vector_b
# 使用*符号将两个向量相乘,是将两个向量中的元素分别相乘,也就是我们所讲到的哈达马乘积
print(v)
# [ 2  6 12]

w = vector_a ** vector_b
print(w)
# 使用二元运算符**对两个向量进行操作,结果为array([1, 8, 81],dtype = int32)
# 表示将向量vector. a中元素对应vector. b中的元素值求幂运算。例如最终结果[1,8,81]可以表示为[1*1,2*2*2,3*3*3*3]

# 求逆矩阵
z = np.linalg.inv(matrix_a)
print(z)
'''
[[-2.   1. ]
 [ 1.5 -0.5]]'''

三、矩阵的高级函数-随机数矩阵

        Numpy除了为我们提供常规的数学计算函数和矩阵相关操作之外,还提供很多功能丰富的模块,随机数模块就是其中一部分。

        利用随机数模块可以生成随机数矩阵,比python自带的随机数模块功能还要强大。

import numpy as np
# 设置随机数种子
np.random.seed()

# 从[1,3)中生成一个整型的随机数,连续生成10个
a = np.random.randint(1, 3, 10)
print(a)
# [1 1 1 2 1 1 1 1 2 2]

# 若要连续产生[1,3}之间的浮点数,可以使用以下方法:
# ①
b = 2*np.random.random(10)+1
print(b)
'''
[2.88458839 2.07004167 2.80814156 1.83247535 2.33649809 2.62763357
 2.0549351  2.33464915 1.70562208 2.66257726]'''
# ②
c = np.random.uniform(1, 3, 10)
print(c)
'''
[1.76967412 1.37703868 2.48838004 1.45986254 2.04487418 2.51107658
 1.25673115 1.31416097 2.56218317 2.90575438]'''

# 生成一个满足正态分布(高斯分布)的矩阵,其维度是4*4
d = np. random.normal(size=(4, 4))
print(d)
'''
[[ 0.76164366  0.11588368  0.49221559 -0.28222691]
 [ 0.47638143 -0.21197541 -1.0776362   0.49241666]
 [ 0.26038756 -0.20406522  1.11210954 -1.191425  ]
 [ 0.58255677  1.84047863 -0.21366512 -0.85425828]]'''

# 随机产生10个n=5、p=0.5的二项分布数据:
e = np.random.binomial(n=5, p=0.5, size=10)
print(e)
# [1 1 5 2 1 2 1 2 1 2]

# 产生一个0到9的序列
data = np.arange(10)
print(data)
# [0 1 2 3 4 5 6 7 8 9]

# 从data数据中随机采集5个样本,采集过程是有放回的
f = np.random.choice(data, 5)
print(f)
# [1 7 3 3 4]

# 从data数据中随机采集5个样本,采集过程是没有放回的
g = np.random.choice(data, 5, replace=False)
print(g)
# [8 9 1 5 0]

# 对data进行乱序
h = np.random.permutation(data)
print(h)
# [8 5 3 9 2 0 4 6 1 7]

# 对data进行乱序,并替换为新的data
np.random.shuffle(data)
print(data)
# [9 7 0 3 8 5 2 1 4 6]

推荐学习:python视频教程

以上がPython の numpy モジュールの詳細な紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事はcsdn.netで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。