この記事では、python に関する関連知識を提供します。主に、マルチプロセスとは何か、プロセスの作成、プロセス間同期、プロセス Chi など、マルチプロセスに関する関連コンテンツを紹介します。 、一緒に見ていきましょう、皆さんのお役に立てれば幸いです。
推奨学習: Python ビデオ チュートリアル
1. マルチプロセスとは何ですか?
1. プロセス
プログラム: たとえば、xxx.py は静的な
プロセスであるプログラムです。 : プログラムの実行後、コードによって使用されるリソースはプロセスと呼ばれ、オペレーティング システムがリソースを割り当てる基本単位になります。スレッドを介してマルチタスクを完了できるだけでなく、プロセスを実行することもできます
2. プロセスのステータス
作業中、タスクの数が CPU コアの数よりも多くなることがよくあります。 、いくつかのタスクが実行されている必要があり、他のいくつかのタスクが CPU の実行を待機しているため、さまざまな状態になります。
- 準備完了状態:実行状態が遅くなり、進行中です CPU の実行を待機しています
- 実行状態: CPU はその機能を実行中です
- 待機状態: 待機中ですプログラムがスリープしているなど、特定の条件が満たされると、この時点では待機状態になります。
2. process-multiprocessing の作成
1. プロセス クラスの構文の説明
multiprocessing
このモジュールは、Process
オブジェクトを作成し、そのstart()
メソッドを呼び出すことでプロセスを生成します。 Process
はthreading.Thread API
と同じです。
構文形式:multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon =None)
パラメータの説明:
-
group
: プロセス グループを指定します。これはほとんどの場合使用されません。 -
target
: 関数参照が渡された場合、子プロセスにここのコードを実行するタスクを与えることができます。 -
name
: の名前を設定します。 -
args
: ターゲットによって指定された関数に渡されるパラメータは、タプル kwargs## の形式で渡されます。 #: ターゲットへ 指定された関数は名前付きパラメータを渡します
multiprocessing.Process オブジェクトには次のメソッドとプロパティがあります:
説明 | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
run()
| 具体的な実行プロセスのメソッド||||||||||||||||||||||||||
start()
| 子プロセス インスタンスの開始 (子プロセスの作成) ||||||||||||||||||||||||||
オプションのパラメーター timeout がデフォルト値 None の場合、join() メソッドを呼び出すプロセスが終了するまでブロックされます。正の数。タイムアウト秒までブロックされます。 | ||||||||||||||||||||||||||
現在のプロセスのエイリアス。デフォルトは Process-N です。 、N は 1 から増加する整数です。 |
||||||||||||||||||||||||||
現在のプロセスの pid (プロセス番号) |
||||||||||||||||||||||||||
プロセスの子プロセスがまだ生きているかどうかを確認する |
#exitcode | |||||||||||||||||||||||||
子プロセスの終了コード
|
daemon | |||||||||||||||||||||||||
プロセスのデーモン フラグはブール値です。
|
#authkey | |||||||||||||||||||||||||
|
sentinel | |||||||||||||||||||||||||
| #terminate()||||||||||||||||||||||||||
| kill()||||||||||||||||||||||||||
| close()||||||||||||||||||||||||||
2. 2 つの while ループをまとめて実行します# -*- coding:utf-8 -*-from multiprocessing import Processimport timedef run_proc(): """子进程要执行的代码""" while True: print("----2----") time.sleep(1)if __name__=='__main__': p = Process(target=run_proc) p.start() while True: print("----1----") time.sleep(1) 実行結果: 3 を開始します。プロセス pid# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport timedef run_proc(): """子进程要执行的代码""" print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号 print('子进程将要结束...')if __name__ == '__main__': print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号 p = Process(target=run_proc) p.start() 実行結果: 4. 子プロセスで指定された関数にパラメータを渡します# -*- coding:utf-8 -*-from multiprocessing import Processimport osfrom time import sleepdef run_proc(name, age, **kwargs): for i in range(10): print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid())) print(kwargs) sleep(0.2)if __name__=='__main__': p = Process(target=run_proc, args=('test',18), kwargs={"m":20}) p.start() sleep(1) # 1秒中之后,立即结束子进程 p.terminate() p.join() 実行結果: 5. グローバル変数はプロセス間で共有されません# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport time nums = [11, 22]def work1(): """子进程要执行的代码""" print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums)) for i in range(3): nums.append(i) time.sleep(1) print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))def work2(): """子进程要执行的代码""" print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))if __name__ == '__main__': p1 = Process(target=work1) p1.start() p1.join() p2 = Process(target=work2) p2.start() 実行結果: in process1 pid=11349 ,nums=[11, 22]in process1 pid=11349 ,nums=[11, 22, 0]in process1 pid=11349 , nums=[11, 22, 0, 1]in process1 pid=11349 ,nums=[11, 22, 0, 1, 2]in process2 pid=11350 ,nums=[11, 22] 3. プロセス間同期 - キュー#1. キュー クラスの構文の説明
|
以上がPython マルチプロセスの知識ポイントのまとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 中国語版
中国語版、とても使いやすい

WebStorm Mac版
便利なJavaScript開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
