この記事では、Redis に関する関連知識を提供します。主にビットマップの問題を紹介します。Redis は、ビットマップ データ構造を提供します。ビットマップ データ構造は、実際には真新しいものではなく、単純に行うことができます。これを配列と考えてください。ただし、内部の内容は 0 か 1 のみです。皆さんのお役に立てれば幸いです。
推奨学習: Redis ビデオ チュートリアル
ユーザーが 1 年間毎日システムにログインしたかどうかを記録する必要がある場合はどうすればよいでしょうか? KV ストレージを使用する場合、各ユーザーは 365 件のレコードを記録する必要があり、ユーザー数が数億に達すると、必要なストレージ容量は膨大になります。
Redis はビットマップ データ構造を提供します。各ユーザーの毎日のログイン レコードは 1 ビットのみを占めます。365 日は 365 ビットに相当します。保存に必要なのは 46 バイトだけであり、データ構造が大幅に改善されます。収納スペース。
ビットマップ データ構造は実際にはまったく新しいものではありません。単純に配列として考えることができますが、その内部のコンテンツはは 0 または 1 (バイナリ ビット配列) のみです。
Redis は SETBIT
、GETBIT
、BITCOUNT
、# # を提供します#BITOPバイナリ ビット配列の処理には 4 つの一般的なコマンドが使用されます。
3.BitMap ソースコード解析3.1 データ構造SDS で表現される 1 バイト (8 ビット) の長さを以下に示します。ビットマップ:
- SETBIT
: ビット配列のオフセットにバイナリ ビットの設定値を指定します。オフセットは 0 からカウントされ、バイナリ ビットの値は0. または 1 になります。元の位置の値を返します。
- GETBIT
: 指定されたオフセットのバイナリ ビットの値を取得します。
- BITCOUNT
: ビット配列内の値が 1 であるバイナリ ビットの数をカウントします。
- BITOP
: 複数のビット配列に対してビット単位の AND、OR、および XOR 演算を実行します。
127.0.0.1:6379> SETBIT first 0 1 # 0000 0001 (integer) 0 127.0.0.1:6379> SETBIT first 3 1 # 0000 1001 (integer) 0 127.0.0.1:6379> SETBIT first 0 0 # 0000 1000 (integer) 1 127.0.0.1:6379> GETBIT first 0 (integer) 0 127.0.0.1:6379> GETBIT first 3 (integer) 1 127.0.0.1:6379> BITCOUNT first # 0000 1000 (integer) 1 127.0.0.1:6379> SETBIT first 0 1 # 0000 1001 (integer) 0 127.0.0.1:6379> BITCOUNT first # 0000 1001 (integer) 2 127.0.0.1:6379> SETBIT first 1 1 # 0000 1011 (integer) 0 127.0.0.1:6379> BITCOUNT first # 0000 1011 (integer) 3 127.0.0.1:6379> SETBIT x 3 1 (integer) 0 127.0.0.1:6379> SETBIT x 1 1 (integer) 0 127.0.0.1:6379> SETBIT x 0 1 # 0000 1011 (integer) 0 127.0.0.1:6379> SETBIT y 2 1 (integer) 0 127.0.0.1:6379> SETBIT y 1 1 # 0000 0110 (integer) 0 127.0.0.1:6379> SETBIT z 2 1 (integer) 0 127.0.0.1:6379> SETBIT z 0 1 # 0000 0101 (integer) 0 127.0.0.1:6379> BITOP AND andRes x y z #0000 0000 (integer) 1 127.0.0.1:6379> BITOP OR orRes x y z #0000 1111 (integer) 1 127.0.0.1:6379> BITOP XOR x y z #0000 1000 (integer) 1 # 对给定的位数组进行按位取反 127.0.0.1:6379> SETBIT value 0 1 (integer) 0 127.0.0.1:6379> SETBIT value 3 1 #0000 1001 (integer) 0 127.0.0.1:6379> BITOP NOT notValue value #1111 0110 (integer) 1
拡張子: Redis の各オブジェクトは、redisObject 構造によって表されます。
typedef struct redisObject { // 类型 unsigned type:4; // 编码 unsigned encoding:4; unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */ // 引用计数 int refcount; // 执行底层实现的数据结构的指针 void *ptr; } robj;
の値は
REDIS_STRING で、これが文字列オブジェクトであることを示します
の値は 1 で、この SDS が buf 配列内の 1 バイトのビット配列
##buf 配列内の
#buf[1] 文字
皆さんの考えをもう一度まとめるために、別のビット配列を次のように示します。
ビット配列は次のもので構成されます。 buf[0]、buf[1]、および buf[2] は 3 バイトに格納され、実際のデータは1111 0000 1100 0011 1010 0101GETBIT
##3.2 GETBIT
GETBIT の時間計算量は
O(1) であることに注意してください。 GETBITコマンドの実行プロセスは次のとおりです。
>>3
) を計算します。バイト値は、指定された を表します。
ああ
f
f
s
e
t
オフセット
offseビット配列 t のどのバイトが位置するか (どの行に計算されるか); GETBIT
命令源码如下所示:
void getbitCommand(client *c) { robj *o; char llbuf[32]; uint64_t bitoffset; size_t byte, bit; size_t bitval = 0; // 获取offset if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK) return; // 查找对应的位图对象 if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_STRING)) return; // 计算offset位于位数组的哪一行 byte = bitoffset >> 3; // 计算offset在一行中的第几位,等同于取模 bit = 7 - (bitoffset & 0x7); // #define sdsEncodedObject(objptr) (objptr->encoding == OBJ_ENCODING_RAW || objptr->encoding == OBJ_ENCODING_EMBSTR) if (sdsEncodedObject(o)) { // SDS 是RAW 或者 EMBSTR类型 if (byte < sdslen(o->ptr)) // 获取指定位置的值 // 注意它不是真正的一个二维数组不能用((uint8_t*)o->ptr)[byte][bit]去获取呀~ bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit); } else { // SDS 是 REDIS_ENCODING_INT 类型的整数,先转为String if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr)) bitval = llbuf[byte] & (1 << bit); } addReply(c, bitval ? shared.cone : shared.czero); }
以GETBIT array 3
为例,array
表示上图中三个字节的位数组。
1. $byte = \lfloor 3 \p8 \rfloor$ 得到值为0,说明在 $buf[0]$ 上 2. $bit = (3\ mod\ 8 ) + 1$得到值为4 3. 定位到 $buf[0]$ 字节的从左至右第4个位置上
因为 GETBIT
命令执行的所有操作都可以在常数时间内完成,所以该命令的算法复杂度为O(1)。
SETBIT
用于将位数组在偏移量的二进制位的值设为value,并向客户端返回旧值。
SITBIT
命令的执行过程如下:
因为SETBIT命令执行的所有操作都可以在常数时间内完成,所以该命令的算法复杂度为O(1)。
SETBIT
命令源码如下所示:
void setbitCommand(client *c) { robj *o; char *err = "bit is not an integer or out of range"; uint64_t bitoffset; ssize_t byte, bit; int byteval, bitval; long on; // 获取offset if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK) return; // 获取我们需要设置的值 if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK) return; /* 判断指定值是否为0或1 */ if (on & ~1) { // 设置了0和1之外的值,直接报错 addReplyError(c,err); return; } // 根据key查询SDS对象(会自动扩容) if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return; /* 获得当前值 */ byte = bitoffset >> 3; byteval = ((uint8_t*)o->ptr)[byte]; bit = 7 - (bitoffset & 0x7); bitval = byteval & (1 << bit); /* 更新值并返回旧值 */ byteval &= ~(1 << bit); byteval |= ((on & 0x1) << bit); ((uint8_t*)o->ptr)[byte] = byteval; // 发送数据修改通知 signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id); server.dirty++; addReply(c, bitval ? shared.cone : shared.czero); }
array
は、上の図の 3 バイト配列を表します。例として SETBIT 配列 10 1
を取り上げます。
## 教えてください例 Lizi 2.0
ターゲット ビット配列の長さが 1 バイトであると仮定します。#3.4 ビットカウント
3.4.1 暴力的なトラバーサル
#データ量が少ない場合は問題ありませんが、データ量が多い場合はそのまま合格です!
8 ビット長のビット配列の場合、次のテーブルを作成できます。このテーブルを通じて、ビット配列から一度に 8 ビットを読み取り、次の値に基づいてテーブルを検索できます。直接知るためのこれらの 8 ビット この値には 1 がいくつ含まれていますか? # 残念ながら、テーブル検索メソッドはメモリを消費します!#3.4.2 ルックアップ テーブル方式For a 有限集合の場合、集合要素の配置は制限され、有限長ビット配列の場合、表現できるバイナリ ビット配置も制限されます。この原理に基づいて、テーブルを作成できます。テーブルのキーはビット配列の特定の配置であり、テーブルの値は、対応するビット配列内の値が 1 であるバイナリ ビットの数です。
目前已知效率最好的通用算法为variable-precision SWAR
算法,该算法通过一系列位移和位运算操作,可以在常数时间(这就很牛逼了)内计算多个字节的汉明重量,并且不需要使用任何额外的内存。
SWAR
算法代码如下所示:
uint32_t swar(uint32_t i) { // 5的二进制:0101 i = (i & 0x55555555) + ((i >> 1) & 0x55555555); // 3的二进制:0011 i = (i & 0x33333333) + ((i >> 2) & 0x33333333); i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F); i = (i*(0x01010101) >> 24); return i; i = i - ((i >> 1) & 0x55555555); i = (i & 0x33333333) + ((i >> 2) & 0x33333333); return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24; }
下面描述一下这几步都干了啥:
- 步骤一计算出的值i的二进制表示可以按每两个二进制位为一组进行分组,各组的十进制表示就是该组的1的数量;
- 步骤二计算出的值i的二进制表示可以按每四个二进制位为一组进行分组,各组的十进制表示就是该组的1的数量;
- 步骤三计算出的值i的二进制表示可以按每八个二进制位为一组进行分组,各组的十进制表示就是该组的1的数量;
- 步骤四的
i*0x01010101
语句计算出bitarray中1的数量并记录在二进制位的最高八位,而>>24
语句则通过右移运算,将bitarray的汉明重量移动到最低八位,得出的结果就是bitarray的汉明重量。
对于调用swar(0xFBB4080B)
,步骤一将计算出值0xA6640406
,这个值表的每两个二进制位的十进制表示记录了0xFBB4080B
每两个二进制位的汉明重量。
步骤二将计算出值0x43310103
,这个值表的每四个二进制位的十进制表示记录了0xFBB4080B
每四个二进制位的汉明重量。
步骤三将计算出值0x7040103
,这个值表的每八个二进制位的十进制表示记录了0xFBB4080B
每八个二进制位的汉明重量。
步骤四首先计算0x7040103 * 0x01010101 = 0xF080403
,将汉明重量聚集到二进制位的最高八位。
之后计算0xF080403 >> 24
,将汉明重量移动到低八位,得到最终值0x1111
,即十进制15。
如果您是Java程序员,可以去看看Integer.bitCount方法,也是基于SWAR算法的思想哦!
大家也可以看看StackFlow上大神对它的讲解:[How does this algorithm to count the number of set bits in a 32-bit integer work?](https://stackoverflow.com/questions/22081738/how-does-this-algorithm-to-count-the-number-of-set-bits-in-a-32-bit-integer-work)3.4.4 源码分析
Redis 中通过调用redisPopcount
方法统计汉明重量,源码如下所示:
long long redisPopcount(void *s, long count) { long long bits = 0; unsigned char *p = s; uint32_t *p4; // 为查表法准备的表 static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8}; // CPU一次性读取8个字节,如果4字节跨了两个8字节,需要读取两次才行 // 所以考虑4字节对齐,只需读取一次就可以读取完毕 while((unsigned long)p & 3 && count) { bits += bitsinbyte[*p++]; count--; } // 一次性处理28字节,单独看一个aux就容易理解了,其实就是SWAR算法 // uint32_t:4字节 p4 = (uint32_t*)p; while(count>=28) { uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7; aux1 = *p4++;// 一次性读取4字节 aux2 = *p4++; aux3 = *p4++; aux4 = *p4++; aux5 = *p4++; aux6 = *p4++; aux7 = *p4++; count -= 28;// 共处理了4*7=28个字节,所以count需要减去28 aux1 = aux1 - ((aux1 >> 1) & 0x55555555); aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333); aux2 = aux2 - ((aux2 >> 1) & 0x55555555); aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333); aux3 = aux3 - ((aux3 >> 1) & 0x55555555); aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333); aux4 = aux4 - ((aux4 >> 1) & 0x55555555); aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333); aux5 = aux5 - ((aux5 >> 1) & 0x55555555); aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333); aux6 = aux6 - ((aux6 >> 1) & 0x55555555); aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333); aux7 = aux7 - ((aux7 >> 1) & 0x55555555); aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333); bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) + ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) + ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) + ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) + ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) + ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) + ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24; } /* 剩余的不足28字节,使用查表法统计 */ p = (unsigned char*)p4; while(count--) bits += bitsinbyte[*p++]; return bits; }
不难发现 Redis 中同时运用了查表法和SWAR算法完成BITCOUNT
功能。
如果没有1GB的内存限制,我们可以使用排序和Set完成这个算法:
这样回答是要GG的节奏呀!
对40亿个QQ号进行排序需要多少时间?这个存储了40亿QQ号的数组容量已经超过1GB了,同理Set集合存储这么多的QQ号也导致内存超限了。
**这不巧了么~我们可以使用刚刚学的BITMAP
来去重呀!**一个字节可以记录8个数是否存在(类似于计数排序),将QQ号对应的offset的值设置为1表示此数存在,遍历完40亿个QQ号后直接统计BITMAP
上值为1的offset即可完成QQ号的去重。
如果是对40亿个QQ号进行排序也是可以用位图完成的哦~一样的思想
既然我们深入了解了BITMAP
,那不进行个实战项目可说不过去呀!
我们使用
BITMAP
实现GITHUB中统计每天提交次数的这个小功能,基于SpringBoot+Echarts实现
如果是记录登录状态我们可以很方便的使用0和1记录,如果是记录提交次数就显得BITMAP
无用了,没关系,我们可以使用一个字节来记录提交次数,只是在业务上需要处理好十进制和二进制直接的转换而已。
public void genTestData() { if(redisUtils.isExist(CommonConstant.KEY)){ return; } // 获取当前年的总天数 int days = getDays(); for (int i = 0; i < days; i++) { int random = ThreadLocalRandom.current().nextInt(64); // 生成随机数表示每天的PR次数 String binaryString = Integer.toBinaryString(random); if (binaryString.length() < 8) { // 填充0 if(binaryString.length() == 0){binaryString = "00000000";} else if(binaryString.length() == 1){binaryString = "0000000"+binaryString;} else if(binaryString.length() == 2){binaryString = "000000"+binaryString;} else if(binaryString.length() == 3){binaryString = "00000"+binaryString;} else if(binaryString.length() == 4){binaryString = "0000"+binaryString;} else if(binaryString.length() == 5){binaryString = "000"+binaryString;} else if(binaryString.length() == 6){binaryString = "00"+binaryString;} else if(binaryString.length() == 7){binaryString = "0"+binaryString;} } char[] chars = binaryString.toCharArray(); for (int j = 0; j < chars.length; j++) { // 设置BitMap redisUtils.setBit(CommonConstant.KEY,i*8+j,chars[j]); } }}/** * 获取当前年的总天数 * @return days 总天数 */private int getDays(){ Calendar calOne = Calendar.getInstance(); int year = calOne.get(Calendar.YEAR); System.out.println(year); Calendar calTwo = new GregorianCalendar(year, 11, 31); return calTwo.get(Calendar.DAY_OF_YEAR);}
public List<String> getPushData() { List<String> res = new ArrayList<>(366); // 没有数据就先造数据 genTestData(); int days = getDays(); for(long i=0;i<days;i++){ StringBuilder sb = new StringBuilder(); for (int j = 0; j < 8; j++) { String bit = redisUtils.getBit(CommonConstant.KEY, i * 8 + j); sb.append(bit); } // 直接返回二进制串,前端转换为十进制 res.add(sb.toString()); } return res;}
这里觉得可以直接将所有的bit统统返回,在前端进行分割处理
<script type="text/javascript"> var chartDom = document.getElementById('main'); var myChart = echarts.init(chartDom); var option; function getVirtulData(year) { var date = +echarts.number.parseDate(year + '-01-01'); var end = +echarts.number.parseDate(+year + 1 + '-01-01'); var dayTime = 3600 * 24 * 1000; var data = []; $.ajax({ "url":'http://localhost:8080/test/getPushData', "async":false, // ajax同步获取 success:function (res){ for (let time = date,k=0; time < end && k < res.data.length; time += dayTime,k++) { data.push([ echarts.format.formatTime('yyyy-MM-dd', time), parseInt(res.data[k],2)//客户端完成进制转换,不放在服务端完成 ]); } } }) return data; } option = { title: { top: 30, left: 'left', text: 'BitMap Demo' }, tooltip: {}, visualMap: { min: 0, max: 32, type: 'piecewise', orient: 'horizontal', left: 'right', top: 220, pieces: [ {min: 0, max: 0,label:"less"}, {min: 1, max: 10,label:" "}, {min: 1, max: 20,label:" "}, {min: 21, max: 40,label:" "}, {min: 41, max: 64,label:"more"}, ], inRange: { color: [ '#EAEDF0', '#9AE9A8', '#41C363', '#31A14E', '#206D38' ],//颜色设置 colorAlpha: 0.9,//透明度 } }, calendar: { top: 120, left: 30, right: 30, cellSize: 13, range: '2022', splitLine: { show: false },//不展示边线 itemStyle: { borderWidth: 0.5 }, yearLabel: { show: false } }, series: { type: 'heatmap', coordinateSystem: 'calendar', data: getVirtulData('2022') } }; option && myChart.setOption(option);</script>
推荐学习:Redis视频教程
以上がRedis のビットマップを 1 つの記事で理解するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。