、
システムパフォーマンスのボトルネックを避けるために、データベースのデータ量はある程度に達します。データは、パーティショニング、シャーディング、データベース、テーブルを使用して処理する必要があります。
2. シャーディング (シャーディングと同様)
シャーディングは、データベースを複数の物理ノードにスケールアウトする効果的な方法であり、その主な目的は、シングルノード データベース サーバーの I/O 容量制限を解決し、データベースのスケーラビリティの問題を解決します。シャードという言葉は「断片」を意味します。データベースを大きなガラス片として扱い、ガラスが割れた場合、その小さな破片のそれぞれをデータベースの断片 (データベース シャード) と呼びます。データベース全体をいくつかの部分に分割するプロセスはシャーディングと呼ばれます。これはシャーディングと翻訳できます。
正式には、シャーディングは、大規模なデータベースを複数の物理ノードに分散するパーティション化スキームとして単純に定義できます。各パーティションにはスライスと呼ばれるデータベースの特定の部分が含まれており、パーティション分割方法は任意であり、従来の水平パーティションと垂直パーティションに限定されません。シャードには、複数のテーブルまたは複数のデータベース インスタンスの内容を含めることができます。各シャードはデータベース サーバー上に配置されます。データベース サーバーは、1 つ以上のデータ シャードを処理できます。サーバーは、クエリのルーティングと転送のためにシステムに必要であり、実行のためにクエリによってアクセスされるデータを含むシャードまたはシャード コレクション ノードにクエリを転送する役割を担います。
3. スケールアウト/スケールアップと垂直分割/水平分割
Mysql の拡張ソリューションにはスケールアウトとスケールアップが含まれます。
スケールアウト(水平拡張)とは、アプリケーションを水平方向に拡張できることを意味します。一般に、データセンター アプリケーションの場合、スケール アウトとは、さらに多くのマシンが追加された場合でも、アプリケーションがこれらのマシンのリソースを有効に活用して、自身の効率を向上させ、優れたスケーラビリティを実現できることを意味します。
スケールアップ (垂直方向の拡張) は、アプリケーションが垂直方向に拡張できることを意味します。一般に、単一マシンの場合、スケールアップは価値があり、コンピューティング ノード (マシン) が CPU コアやストレージ デバイスを追加し、より大きなメモリを使用すると、アプリケーションはこれらのリソースを最大限に活用して効率を向上させることができます。優れた拡張性。
MySql のシャーディング戦略には、垂直シャーディングと水平シャーディングが含まれます。
垂直 (垂直) 分割: テーブル間の IO 競合を解決するための機能モジュールによる分割を指します。例えば、注文データベース、商品データベース、ユーザーデータベース… このように、複数のデータベースのテーブル構造は異なります。
水平 (水平) 分割: 同じテーブルのデータをブロックに保存し、それを別のデータベースに保存して、単一テーブルのデータ量増加によるプレッシャーを解決します。これらのデータベースのテーブル構造はまったく同じです。
テーブル構造の設計は縦に分割されています。一般的なシナリオには、
#大きなフィールドの垂直セグメンテーションが含まれます。基本テーブルのアクセス パフォーマンスを向上させるために、別のテーブルに大きなフィールドを個別に構築します。原則として、パフォーマンスが重要なアプリケーションでは、データベースの大きなフィールドは避けるべきです。
垂直セグメンテーションによる使い方に合わせてたとえば、企業のマテリアル属性は、基本属性、販売属性、購買属性、製造属性、財務会計属性などに従って垂直にセグメント化できます。
アクセス頻度に従って垂直にセグメント化されます。たとえば、電子商取引や Web 2.0 システムでユーザー属性の設定が多数ある場合、基本的な頻繁に使用される属性とあまり使用されない属性を垂直に分離できます。デザインは横に分かれています。一般的なシナリオには、次のようなものがあります。
たとえば、オンライン電子商取引 Web サイトでは、注文テーブル データの量が多すぎて、年レベルと月レベルで分割されています。
Web 2.0 Web サイト上の登録ユーザーとオンライン アクティブ ユーザーが多すぎる場合は、ユーザー ID の範囲に従って、関連するユーザーとそのユーザーに密接に関連するテーブルを水平方向にセグメント化します。フォーラムのトップの投稿, ページングの問題のため、各ページにピン留めされた投稿を表示する必要があります。この場合、ピン留めされた投稿を取得するときにすべての投稿のテーブルから読み取られるのを避けるために、ピン留めされた投稿を水平に分割できます
- 4. テーブルの分割とパーティショニング
テーブルの分割とは、表面的にはテーブルを複数の小さなテーブルに分割することを意味しますが、パーティショニングはテーブルのデータを N 個の倍数に分割することを意味します。エリア、ブロック、これらは同じディスク上に存在することも、異なるディスク上に存在することもできます。
サブテーブルとパーティションの違い
実装の観点からmysqlのサブテーブルは実際のサブテーブルです-table. テーブルが多くのテーブルに分割された後、それぞれの小さなテーブルは完全なテーブルとなり、3 つのファイル (MyISAM エンジン: .MYD データ ファイル、.MYI インデックス ファイル、および .frm テーブル構造ファイル) に対応します。 - データ処理
データをテーブルに分割した後、分割テーブルにデータを格納します メインテーブルは単なるシェルであり、データアクセスは分割テーブルごとに発生します。パーティショニングにはテーブルのパーティショニングという概念はありません。パーティショニングは、データを格納するファイルを多数の小さなブロックに分割するだけです。パーティション化されたテーブルは依然として 1 つのテーブルであり、データ処理は依然として自分自身で完了します。
- パフォーマンスの向上
テーブルを分割すると、単一テーブルの同時実行能力が向上し、ディスク I/O パフォーマンスも向上します。パーティションはディスク I/O ボトルネックを突破するため、ディスクの読み取りおよび書き込み機能を改善して mysql のパフォーマンスを向上させたいと考えています。
現時点では、パーティションとサブテーブルのテストの焦点は異なります。サブテーブルの焦点は、データにアクセスする際の MySQL の同時実行性を向上させる方法であり、パーティションの場合は、読み取りを突破する方法です。 mysql のパフォーマンスを向上させるという目的を達成するためのディスクの書き込み機能。
- 実装の難易度について
テーブルを分割する方法はいろいろありますが、マージを使ってテーブルを分割するのが最も簡単です。この方法はパーティショニングと同じくらい簡単で、プログラム コードに対して透過的です。他のテーブルパーティショニング方法を使用する場合は、パーティショニングよりも面倒になります。パーティション化の実装は比較的単純で、パーティション化されたテーブルの作成は通常のテーブルの構築と何ら変わりはなく、コード側に対して透過的です。
パーティショニングに適用できるシナリオ
テーブルのクエリ速度がテーブルの使用に影響を与えるほど遅い場合。
- #テーブル内のデータはセグメント化されています
- データに対する操作には、多くの場合、すべてのデータではなく、データの一部のみが含まれます
CREATE TABLE sales (
id INT AUTO_INCREMENT,
amount DOUBLE NOT NULL,
order_day DATETIME NOT NULL,
PRIMARY KEY(id, order_day)) ENGINE=InnodbPARTITION BY RANGE(YEAR(order_day)) (
PARTITION p_2010 VALUES LESS THAN (2010),
PARTITION p_2011 VALUES LESS THAN (2011),
PARTITION p_2012 VALUES LESS THAN (2012),PARTITION p_catchall VALUES LESS THAN MAXVALUE);
#サブテーブルに適用可能なシナリオ
テーブルのクエリ速度が遅く、テーブルの使用に影響を与えています。 頻繁に挿入したり、結合クエリを実行したりすると、速度が遅くなります。 サブテーブルの実装には、ビジネス実装と移行を組み合わせる必要があり、これは比較的複雑です。
5. テーブル シャーディングとデータベース シャーディング テーブル シャーディングは、単一テーブル内の過剰なデータ量によって引き起こされるクエリ効率の低下の問題を解決できます。データベースへの十分なデータの同時処理機能により、質的な向上がもたらされます。高度な同時読み取りおよび書き込みアクセスに直面して、データベース マスター サーバーが書き込み操作の負荷に耐えられない場合、スレーブ サーバーをどのように拡張しても意味がありません。そこで考え方を変えてデータベースを分割し、データベース書き込み能力を向上させる必要があります、これがいわゆるサブデータベースです。
テーブル シャーディング戦略と同様に、シャーディングでは、次の図に示すように、キーワード モジュロを使用してデータ アクセスをルーティングできます。

# #6. パーティショニングとシャーディングの違い 原文
推奨事項: "
mysql ビデオ チュートリアル"
テーブルのクエリ速度がテーブルの使用に影響を与えるほど遅い場合。
CREATE TABLE sales ( id INT AUTO_INCREMENT, amount DOUBLE NOT NULL, order_day DATETIME NOT NULL, PRIMARY KEY(id, order_day)) ENGINE=InnodbPARTITION BY RANGE(YEAR(order_day)) ( PARTITION p_2010 VALUES LESS THAN (2010), PARTITION p_2011 VALUES LESS THAN (2011), PARTITION p_2012 VALUES LESS THAN (2012),PARTITION p_catchall VALUES LESS THAN MAXVALUE);


以上がMySql テーブル、データベース、シャード、パーティションの詳細な説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

酸性属性には、原子性、一貫性、分離、耐久性が含まれ、データベース設計の基礎です。 1.原子性は、トランザクションが完全に成功するか、完全に失敗することを保証します。 2.一貫性により、データベースがトランザクションの前後に一貫性を保証します。 3.分離により、トランザクションが互いに干渉しないようにします。 4.永続性により、トランザクションの提出後にデータが永久に保存されることが保証されます。

MySQLは、データベース管理システム(DBMS)であるだけでなく、プログラミング言語にも密接に関連しています。 1)DBMSとして、MySQLはデータを保存、整理、取得するために使用され、インデックスを最適化するとクエリのパフォーマンスが向上する可能性があります。 2)SQLとPythonに埋め込まれたプログラミング言語とSQLalchemyなどのORMツールを使用すると、操作を簡素化できます。 3)パフォーマンスの最適化には、インデックス、クエリ、キャッシュ、ライブラリ、テーブル分割、およびトランザクション管理が含まれます。

MySQLはSQLコマンドを使用してデータを管理します。 1.基本コマンドには、select、挿入、更新、削除が含まれます。 2。高度な使用には、参加、サブクエリ、および集計関数が含まれます。 3.一般的なエラーには、構文、ロジック、パフォーマンスの問題が含まれます。 4。最適化のヒントには、インデックスの使用、Select*の回避、制限の使用が含まれます。

MySQLは、データの保存と管理に適した効率的なリレーショナルデータベース管理システムです。その利点には、高性能クエリ、柔軟なトランザクション処理、豊富なデータ型が含まれます。実際のアプリケーションでは、MySQLはeコマースプラットフォーム、ソーシャルネットワーク、コンテンツ管理システムでよく使用されますが、パフォーマンスの最適化、データセキュリティ、スケーラビリティに注意を払う必要があります。

SQLとMySQLの関係は、標準言語と特定の実装との関係です。 1.SQLは、リレーショナルデータベースの管理と操作に使用される標準言語であり、データの追加、削除、変更、クエリを可能にします。 2.MYSQLは、SQLを運用言語として使用し、効率的なデータストレージと管理を提供する特定のデータベース管理システムです。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

説明コマンドのキーメトリックには、タイプ、キー、行、および追加が含まれます。 1)タイプは、クエリのアクセスタイプを反映しています。値が高いほど、constなどの効率が高くなります。 2)キーは使用されているインデックスを表示し、nullはインデックスがないことを示します。 3)行はスキャンされた行の数を推定し、クエリのパフォーマンスに影響します。 4)追加の情報を最適化する必要があるというFilesortプロンプトを使用するなど、追加情報を提供します。

Temporaryを使用すると、MySQLクエリに一時テーブルを作成する必要があることが示されています。これは、異なる列、またはインデックスされていない列を使用して順番に一般的に見られます。インデックスの発生を回避し、クエリを書き直し、クエリのパフォーマンスを改善できます。具体的には、expliect出力に使用を使用する場合、MySQLがクエリを処理するために一時テーブルを作成する必要があることを意味します。これは通常、次の場合に発生します。1)個別またはグループビーを使用する場合の重複排除またはグループ化。 2)Orderbyに非インデックス列が含まれているときに並べ替えます。 3)複雑なサブクエリを使用するか、操作に参加します。最適化方法には以下が含まれます。1)OrderbyとGroupB


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Dreamweaver Mac版
ビジュアル Web 開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター
