ホームページ >ウェブフロントエンド >jsチュートリアル >JavaScriptにおける二分木、動的計画法、バックトラッキング手法(事例分析)

JavaScriptにおける二分木、動的計画法、バックトラッキング手法(事例分析)

angryTom
angryTom転載
2019-11-28 13:21:242350ブラウズ

急いで書きました。全てのテストケースは実行できていますが、メモリや効率を考えるとまだまだ改善すべき点が多いので、アドバイスをお願いします

JavaScriptにおける二分木、動的計画法、バックトラッキング手法(事例分析)

問題の説明

バイナリ ツリーが与えられた場合、ルート ノードはレベル 1、深さは 1 です。値 v を持つノードの行をその d 番目のレベルに追加します。

ルールの追加: 深さの値 d (正の整数) を指定すると、深さ d-1 層の空ではないノード N ごとに、N の値 v を持つ 2 つの左側のサブツリーと右側のサブツリーを作成します。木。

N の元の左サブツリーを新しいノード v の左サブツリーに接続します;

N の元の右サブツリーを新しいノード v の右サブツリーに接続します。

d の値が 1 で、深さ d - 1 が存在しない場合、新しいルート ノード v が作成され、元のツリー全体が v の左側のサブツリーとして機能します。

#例

[関連コースの推奨事項:

JavaScript ビデオ チュートリアル]

Input: 
A binary tree as following:       4
     /   \    2     6
   / \   / 
  3   1 5   v = 1d = 2Output: 
       4
      / \     1   1
    /     \   2       6
  / \     / 
 3   1   5

基本的な考え方

バイナリ ツリーの事前順序走査

コードの基本構造

は最終的な構造ではなく、一般的な構造です

/**
 * @param {number} cd:current depth,递归当前深度
 * @param {number} td:target depth, 目标深度
 */
var traversal = function (node, v, cd, td) {
    // 递归到目标深度,创建新节点并返回
  if (cd === td) {
    // return 新节点
  }
  // 向左子树递归
  if (node.left) {
    node.left = traversal (node.left, v, cd + 1, td);
  }
  // 向右子树递归
  if (node.right) {
    node.right = traversal (node.right, v, cd + 1, td);
  }
  // 返回旧节点
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
    // 从根节点开始递归
  traversal (root, v, 1, td);
  return root;
};

具体的な分析
##議論を分類し、3 つの状況に分けて処理できます

##最初の状況: ターゲットの深さ

処理方法: val ノードは、ターゲットの深さに対応するノードを置き換えます。また、

●ターゲット ノードが元々左側のサブツリーである場合、ターゲット ノードは、リセット後の val ノードの左側です。 サブツリー

#● ターゲット ノードが元々右側のサブツリーだった場合、リセット後、ターゲット ノードは val ノードの右側のサブツリーになります。

2 つの状況: ターゲットの深さ > 現在の再帰パスの最大の深さ

質問を読んだ後、次のような説明があることがわかりました。入力深さの値 d の範囲は次のとおりです: [1、バイナリ ツリーの最大の深さは 1] ''

したがって、ターゲットの深さが偶然にも、バイナリ ツリーの深さよりも 1 層深い場合、現在のパスの処理方法は次のとおりです。

最下層ノード Node の左右の分岐に val を追加します。

ケース 3:ターゲットの深さは 1

質問の意味をもう一度分析しましょう。質問は次のように述べています。「d の値が 1 で、深さ d - 1 が存在しない場合、新しいルート ノードを作成します」 v であり、元のツリー全体が v の左側のサブツリーとして使用されます。」

これは、ターゲットの深さが 1 の場合、処理方法は次のようになります

##すべてのコード

/**
 * @param {v} val,插入节点携带的值
 * @param {cd} current depth,递归当前深度
 * @param {td} target depth, 目标深度
 * @param {isLeft}  判断原目标深度的节点是在左子树还是右子树
 */
var traversal = function (node, v, cd, td, isLeft) {
  debugger;
  if (cd === td) {
    const newNode = new TreeNode (v);
    // 如果原来是左子树,重置后目标节点还是在左子树上,否则相反
    if (isLeft) {
      newNode.left = node;
    } else {
      newNode.right = node;
    }
    return newNode;
  }
  // 处理上述的第1和第2种情况
  if (node.left || (node.left === null && cd + 1 === td)) {
    node.left = traversal (node.left, v, cd + 1, td, true);
  }
  if (node.right || (node.right === null && cd + 1 === td)) {
    node.right = traversal (node.right, v, cd + 1, td, false);
  }
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
  // 处理目标深度为1的情况,也就是上述的第3种情况
  if (td === 1) {
    const n = new TreeNode (v);
    n.left = root;
    return n;
  }
  traversal (root, v, 1, td);
  return root;
};
単語分割

問題の説明

空ではない文字列 s と空ではない単語リストを含む辞書 wordDict を使用して、辞書に表示される 1 つ以上の単語にスペースで分割できるかどうかを決定します。

手順:

1. 辞書内の単語は分割時に再利用できます。

2.你可以假设字典中没有重复的单词。

Example 

example1
输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
注意: 你可以重复使用字典中的单词。

example2
输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-break

基本思想 

动态规划

具体分析

动态规划的关键点是:寻找状态转移方程

有了这个状态转移方程,我们就可以根据上一阶段状态和决策结果,去求出本阶段的状态和结果

然后,就可以从初始值,不断递推求出最终结果。

在这个问题里,我们使用一个一维数组来存放动态规划过程的递推数据

假设这个数组为dp,数组元素都为true或者false,

dp[N] 存放的是字符串s中从0到N截取的子串是否是“可拆分”的布尔值

让我们从一个具体的中间场景出发来思考计算过程

假设我们有

wordDict = ['ab','cd','ef']
s ='abcdef'

并且假设目前我们已经得出了N=1到N=5的情况,而现在需要计算N=6的情况

或者说,我们已经求出了dp[1] 到dp[5]的布尔值,现在需要计算dp[6] = ?

该怎么计算呢?

现在新的字符f被加入到序列“abcde”的后面,如此以来,就新增了以下几种6种需要计算的情况

A序列 + B序列1.abcdef + ""
2.abcde + f3.abcd + ef4.abc + def5.ab + cdef6.a + bcdef
注意:当A可拆且B可拆时,则A+B也是可拆分的

从中我们不难发现两点

1. 当A可拆且B可拆时,则A+B也是可拆分的

2. 这6种情况只要有一种组合序列是可拆分的,abcdef就一定是可拆的,也就得出dp[6] = true了

下面是根据根据已有的dp[1] 到dp[5]的布尔值,动态计算dp[6] 的过程

(注意只要计算到可拆,就可以break循环了)

具体代码

var initDp = function (len) {
  let dp = new Array (len + 1).fill (false);
  return dp;
};
/**
 * @param {string} s
 * @param {string[]} wordDict
 * @return {boolean}
 */
var wordBreak = function (s, wordDict) {
  // 处理空字符串
  if (s === '' && wordDict.indexOf ('') === -1) {
    return false;
  }
  const len = s.length;
  // 默认初始值全部为false
  const dp = initDp (len);
  const a = s.charAt (0);
  // 初始化动态规划的初始值
  dp[0] = wordDict.indexOf (a) === -1 ? false : true;
  dp[1] = wordDict.indexOf (a) === -1 ? false : true;
  // i:end
  // j:start
  for (let i = 1; i < len; i++) {
    for (let j = 0; j <= i; j++) {
      // 序列[0,i] = 序列[0,j] + 序列[j,i]
      // preCanBreak表示序列[0,j]是否是可拆分的
      const preCanBreak = dp[j];
      // 截取序列[j,i]
      const str = s.slice (j, i + 1);
      // curCanBreak表示序列[j,i]是否是可拆分的
      const curCanBreak = wordDict.indexOf (str) !== -1;
      // 情况1: 序列[0,j]和序列[j,i]都可拆分,那么序列[0,i]肯定也是可拆分的
      const flag1 = preCanBreak && curCanBreak;
      // 情况2: 序列[0,i]本身就存在于字典中,所以是可拆分的
      const flag2 = curCanBreak && j === 0;
      if (flag1 || flag2) {
        // 设置bool值,本轮计算结束
        dp[i + 1] = true;
        break;
      }
    }
  }
  // 返回最后结果
  return dp[len];
};

全排列

题目描述

给定一个没有重复数字的序列,返回其所有可能的全排列。

Example

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

基本思想

回溯法

具体分析

1. 深度优先搜索搞一波,index在递归中向前推进

2. 当index等于数组长度的时候,结束递归,收集到results中(数组记得要深拷贝哦)

3. 两次数字交换的运用,计算出两种情况

总结

想不通没关系,套路一波就完事了

具体代码

var swap = function (nums, i, j) {
  const temp = nums[i];
  nums[i] = nums[j];
  nums[j] = temp;
};

var recursion = function (nums, results, index) {
  // 剪枝
  if (index >= nums.length) {
    results.push (nums.concat ());
    return;
  }
  // 初始化i为index
  for (let i = index; i < nums.length; i++) {
    // index 和 i交换??
    // 统计交换和没交换的两种情况
    swap (nums, index, i);
    recursion (nums, results, index + 1);
    swap (nums, index, i);
  }
};
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function (nums) {
  const results = [];
  recursion (nums, results, 0);
  return results;
};

本文来自 js教程 栏目,欢迎学习!  

以上がJavaScriptにおける二分木、動的計画法、バックトラッキング手法(事例分析)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事はcnblogs.comで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。