スタックは、最後の最初の原則(LIFOとも呼ばれる)に従う基本的なデータ構造です。整理機能呼び出しや操作の取り消しなど、スタックには多くのユースケースがあります。多くの場合、スタック内の最大の要素と最小の要素を見つけるという問題に遭遇する可能性があり、この記事では、Javaを使用してこのタスクを達成するための複数の方法を実証します。
スタックを理解
スタックは、上部と呼ばれる一方の端でのみ操作を可能にする線形データ構造です。主な操作には以下が含まれます:
- プッシュ(プッシュ):スタックの上部に要素を追加します。
- pop(pop):削除して、スタックの上部要素に戻ります。
- ビュー(ピーク):スタックを削除せずに、スタックの上部要素を表示します。
- isempty(isempty):スタックが空であるかどうかを確認します。
問題声明
目標は、スタック内の最大要素と最小要素を決定することです。スタックのLIFOの性質を考えると、上部以外の要素に直接アクセスすることはできません。これには、最大値と最小値を追跡しながら、スタックを横断する必要があります。
2つの追加変数を使用
ここでは、2つの変数を使用して、それぞれ最小値と最大値を追跡します。スタックを反復し、各要素が処理されるときにこれらの変数を更新します。これは最も簡単な方法であり、最も時間のかかるスペースを消費する方法です。
min
max
import java.util.Stack; public class MaxMinInStack { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); stack.push(10); stack.push(20); stack.push(30); stack.push(5); stack.push(15); int[] result = findMaxMin(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static int[] findMaxMin(Stack<Integer> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } int max = Integer.MIN_VALUE; int min = Integer.MAX_VALUE; for (Integer element : stack) { if (element > max) { max = element; } if (element < min) { min = element; } } return new int[]{max, min}; } }最大要素:30 最小要素:5
補助スタックを使用して
ここでは、ポップアップ操作を使用して、必要に応じて最小値と最大値を更新することにより、スタックを通過します。補助スタックは一時的に要素を保存し、これらの要素を元のスタックに復元します。
output
import java.util.Stack; public class MaxMinInStack { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); stack.push(10); stack.push(20); stack.push(30); stack.push(5); stack.push(15); int[] result = findMaxMinWithAuxiliaryStack(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static int[] findMaxMinWithAuxiliaryStack(Stack<Integer> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } Stack<Integer> tempStack = new Stack<>(); int max = stack.peek(); int min = stack.peek(); while (!stack.isEmpty()) { int current = stack.pop(); if (current > max) { max = current; } if (current < min) { min = current; } tempStack.push(current); } while (!tempStack.isEmpty()) { stack.push(tempStack.pop()); } return new int[]{max, min}; } }最大要素:30 最小要素:5
2つのスタックを使用してください このメソッドは2つの追加スタックを使用します。1つは最大の要素(
)を覚えるために、もう1つは最小の要素(
)を覚えるためです。新しい要素がメインスタックに入るたびに、最大値または最小値を大きくする場合は、
またはにも配置します。 maxStack
minStack
maxStack
minStack
import java.util.Stack; public class MaxMinInStack { // ... (main method remains the same) ... public static int[] findMaxMinWithTwoStacks(Stack<Integer> stack) { Stack<Integer> maxStack = new Stack<>(); Stack<Integer> minStack = new Stack<>(); while (!stack.isEmpty()) { int current = stack.pop(); if (maxStack.isEmpty() || current >= maxStack.peek()) { maxStack.push(current); } if (minStack.isEmpty() || current <= minStack.peek()) { minStack.push(current); } } return new int[]{maxStack.peek(), minStack.peek()}; } }
修正されたスタック構造を使用します
スタック構造は、最大値と最小値と通常のスタック要素自体に含まれるように変更されています。各要素は、値、現在の最大値、現在の最小値を含むペアとして保存されます。output 最大要素:30 最小要素:5
import java.util.Stack; public class MaxMinInStack { static class StackNode { int value; int currentMax; int currentMin; StackNode(int value, int currentMax, int currentMin) { this.value = value; this.currentMax = currentMax; this.currentMin = currentMin; } } public static void main(String[] args) { Stack<StackNode> stack = new Stack<>(); push(stack, 10); push(stack, 20); push(stack, 30); push(stack, 5); push(stack, 15); int[] result = findMaxMinWithModifiedStack(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static void push(Stack<StackNode> stack, int value) { int max = stack.isEmpty() ? value : Math.max(value, stack.peek().currentMax); int min = stack.isEmpty() ? value : Math.min(value, stack.peek().currentMin); stack.push(new StackNode(value, max, min)); } public static int[] findMaxMinWithModifiedStack(Stack<StackNode> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } StackNode topNode = stack.peek(); return new int[]{topNode.currentMax, topNode.currentMin}; } }
結論
スタック内の最大の要素と最小の要素を探すことは、それぞれに利点と短所を備えたさまざまな方法で解決できます。示されている方法には、追加の変数、補助スタックの使用、最大値と最小値のための個別のスタックの管理、またはスタック自体の構造の変更が含まれます。各テクノロジーは、スタックアイテムにアクセスまたは保存する特定の方法を提供します。これにより、メモリの制限、パフォーマンス要件、データの整合性要件に基づいて特定の状況に適しています。これらの方法を理解して適用することで、開発者がJavaのスタックを効果的に処理し、アプリケーションを特定の状況に最適にすることができます。
以上がスタック内の最大要素と最小要素を見つけるためのJavaプログラムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

jvm'sperformanceiscompetitivewitherruntimes、sped、safety、andproductivityの提供

javaachievesplatformedentenceTheThejavavirtualMachine(JVM)、avainwithcodetorunonanyplatformwithajvm.1)codescompiledintobytecode、notmachine-specificcode.2)

thejvmisanabstractcomputingMachineCrucialForrunningJavaProgramsDuetoitsPlatForm-IndopentInterChitecture.Itincludes:1)ClassLoaderForloadingClasses、2)Runtimedataareaforforforatastorage、3)executionEngineWithinterter、Jitcompiler、およびGarbagecolfecolfecolfececolfecolfer

jvmhasacloserelationshiptheosasittrantesjavabytecodecodecodecodecodecodecodecodecodecodecodecodecodetructions、manageSmemory、およびhandlesgarbagecollection.thisrelationshipallowsjavatorunonvariousosenvirnments、Butalsedentsはspeedifediferentjvmbeviorhiorsandosendisfredediferentjvmbehbehioorysando

Javaの実装「Write and、Run Everywherewhere」はBytecodeにコンパイルされ、Java仮想マシン(JVM)で実行されます。 1)Javaコードを書き、それをByteCodeにコンパイルします。 2)JVMがインストールされたプラットフォームでByteCodeが実行されます。 3)Javaネイティブインターフェイス(JNI)を使用して、プラットフォーム固有の機能を処理します。 JVMの一貫性やプラットフォーム固有のライブラリの使用などの課題にもかかわらず、Woraは開発効率と展開の柔軟性を大幅に向上させます。

javaachievesplatformentenceTheTheTheJavavirtualMachine(JVM)、CodetorunondifferentoperatingSystemswithOutModification.thejvmcompilesjavacodeplatform-IndopentedbyTecodeを承認することを許可します

javaispowerfulfulduetoitsplatformindepentence、object-orientednature、richstandardlibrary、performancecapability、andstrongsecurityfeatures.1)platformendependenceallowseplicationStorunonaydevicesupportingjava.2)オブジェクト指向のプログラマン型

上位のJava関数には、次のものが含まれます。1)オブジェクト指向プログラミング、サポートポリ型、コードの柔軟性と保守性の向上。 2)例外処理メカニズム、トライキャッチ式ブロックによるコードの堅牢性の向上。 3)ゴミ収集、メモリ管理の簡素化。 4)ジェネリック、タイプの安全性の向上。 5)コードをより簡潔で表現力豊かにするためのAMBDAの表現と機能的なプログラミング。 6)最適化されたデータ構造とアルゴリズムを提供するリッチ標準ライブラリ。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
