検索

注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。 一、前期准备 1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277 2、准备数据文件如下sample.txt: 12345679867623119010123


注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。

一、前期准备

1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277

2、准备数据文件如下sample.txt:

123456798676231190101234567986762311901012345679867623119010123456798676231190101234561+00121534567890356
123456798676231190101234567986762311901012345679867623119010123456798676231190101234562+01122934567890456
123456798676231190201234567986762311901012345679867623119010123456798676231190101234562+02120234567893456
123456798676231190401234567986762311901012345679867623119010123456798676231190101234561+00321234567803456
123456798676231190101234567986762311902012345679867623119010123456798676231190101234561+00429234567903456
123456798676231190501234567986762311902012345679867623119010123456798676231190101234561+01021134568903456
123456798676231190201234567986762311902012345679867623119010123456798676231190101234561+01124234578903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+04121234678903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+00821235678903456


二、编写代码

1、创建Map

package org.jediael.hadoopDemo.maxtemperature;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper extends
		Mapper<longwritable text intwritable> {
	private static final int MISSING = 9999;

	@Override
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String year = line.substring(15, 19);
		int airTemperature;
		if (line.charAt(87) == '+') { // parseInt doesn't like leading plus
										// signs
			airTemperature = Integer.parseInt(line.substring(88, 92));
		} else {
			airTemperature = Integer.parseInt(line.substring(87, 92));
		}
		String quality = line.substring(92, 93);
		if (airTemperature != MISSING && quality.matches("[01459]")) {
			context.write(new Text(year), new IntWritable(airTemperature));
		}
	}
}
</longwritable>

2、创建Reduce
package org.jediael.hadoopDemo.maxtemperature;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer extends
		Reducer<text intwritable text> {
	@Override
	public void reduce(Text key, Iterable<intwritable> values, Context context)
			throws IOException, InterruptedException {
		int maxValue = Integer.MIN_VALUE;
		for (IntWritable value : values) {
			maxValue = Math.max(maxValue, value.get());
		}
		context.write(key, new IntWritable(maxValue));
	}
}</intwritable></text>

3、创建main方法
package org.jediael.hadoopDemo.maxtemperature;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {
	public static void main(String[] args) throws Exception {
		if (args.length != 2) {
			System.err
					.println("Usage: MaxTemperature <input path> <output path>");
			System.exit(-1);
		}
		Job job = new Job();
		job.setJarByClass(MaxTemperature.class);
		job.setJobName("Max temperature");
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		job.setMapperClass(MaxTemperatureMapper.class);
		job.setReducerClass(MaxTemperatureReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}
</output>

4、导出成MaxTemp.jar,并上传至运行程序的服务器。


三、运行程序

1、创建input目录并将sample.txt复制到input目录

hadoop fs -put sample.txt /

2、运行程序

export HADOOP_CLASSPATH=MaxTemp.jar

 hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10

注意输出目录不能已经存在,否则会创建失败。

3、查看结果

(1)查看结果

[jediael@jediael44 code]$  hadoop fs -cat output10/*
14/07/09 14:51:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1901    42
1902    212
1903    412
1904    32
1905    102

(2)运行时输出

[jediael@jediael44 code]$  hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
14/07/09 14:50:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/09 14:50:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/09 14:50:42 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/07/09 14:50:43 INFO input.FileInputFormat: Total input paths to process : 1
14/07/09 14:50:43 INFO mapreduce.JobSubmitter: number of splits:1
14/07/09 14:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1404888618764_0001
14/07/09 14:50:44 INFO impl.YarnClientImpl: Submitted application application_1404888618764_0001
14/07/09 14:50:44 INFO mapreduce.Job: The url to track the job: http://jediael44:8088/proxy/application_1404888618764_0001/
14/07/09 14:50:44 INFO mapreduce.Job: Running job: job_1404888618764_0001
14/07/09 14:50:57 INFO mapreduce.Job: Job job_1404888618764_0001 running in uber mode : false
14/07/09 14:50:57 INFO mapreduce.Job:  map 0% reduce 0%
14/07/09 14:51:05 INFO mapreduce.Job:  map 100% reduce 0%
14/07/09 14:51:15 INFO mapreduce.Job:  map 100% reduce 100%
14/07/09 14:51:15 INFO mapreduce.Job: Job job_1404888618764_0001 completed successfully
14/07/09 14:51:16 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=94
                FILE: Number of bytes written=185387
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=1051
                HDFS: Number of bytes written=43
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=5812
                Total time spent by all reduces in occupied slots (ms)=7023
                Total time spent by all map tasks (ms)=5812
                Total time spent by all reduce tasks (ms)=7023
                Total vcore-seconds taken by all map tasks=5812
                Total vcore-seconds taken by all reduce tasks=7023
                Total megabyte-seconds taken by all map tasks=5951488
                Total megabyte-seconds taken by all reduce tasks=7191552
        Map-Reduce Framework
                Map input records=9
                Map output records=8
                Map output bytes=72
                Map output materialized bytes=94
                Input split bytes=97
                Combine input records=0
                Combine output records=0
                Reduce input groups=5
                Reduce shuffle bytes=94
                Reduce input records=8
                Reduce output records=5
                Spilled Records=16
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=154
                CPU time spent (ms)=1450
                Physical memory (bytes) snapshot=303112192
                Virtual memory (bytes) snapshot=1685733376
                Total committed heap usage (bytes)=136515584
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=954
        File Output Format Counters 
                Bytes Written=43


声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
酸性の特性(原子性、一貫性、分離、耐久性)を説明します。酸性の特性(原子性、一貫性、分離、耐久性)を説明します。Apr 16, 2025 am 12:20 AM

酸性属性には、原子性、一貫性、分離、耐久性が含まれ、データベース設計の基礎です。 1.原子性は、トランザクションが完全に成功するか、完全に失敗することを保証します。 2.一貫性により、データベースがトランザクションの前後に一貫性を保証します。 3.分離により、トランザクションが互いに干渉しないようにします。 4.永続性により、トランザクションの提出後にデータが永久に保存されることが保証されます。

MySQL:データベース管理システムとプログラミング言語MySQL:データベース管理システムとプログラミング言語Apr 16, 2025 am 12:19 AM

MySQLは、データベース管理システム(DBMS)であるだけでなく、プログラミング言語にも密接に関連しています。 1)DBMSとして、MySQLはデータを保存、整理、取得するために使用され、インデックスを最適化するとクエリのパフォーマンスが向上する可能性があります。 2)SQLとPythonに埋め込まれたプログラミング言語とSQLalchemyなどのORMツールを使用すると、操作を簡素化できます。 3)パフォーマンスの最適化には、インデックス、クエリ、キャッシュ、ライブラリ、テーブル分割、およびトランザクション管理が含まれます。

MySQL:SQLコマンドでデータの管理MySQL:SQLコマンドでデータの管理Apr 16, 2025 am 12:19 AM

MySQLはSQLコマンドを使用してデータを管理します。 1.基本コマンドには、select、挿入、更新、削除が含まれます。 2。高度な使用には、参加、サブクエリ、および集計関数が含まれます。 3.一般的なエラーには、構文、ロジック、パフォーマンスの問題が含まれます。 4。最適化のヒントには、インデックスの使用、Select*の回避、制限の使用が含まれます。

MySQLの目的:データを効果的に保存および管理しますMySQLの目的:データを効果的に保存および管理しますApr 16, 2025 am 12:16 AM

MySQLは、データの保存と管理に適した効率的なリレーショナルデータベース管理システムです。その利点には、高性能クエリ、柔軟なトランザクション処理、豊富なデータ型が含まれます。実際のアプリケーションでは、MySQLはeコマースプラットフォーム、ソーシャルネットワーク、コンテンツ管理システムでよく使用されますが、パフォーマンスの最適化、データセキュリティ、スケーラビリティに注意を払う必要があります。

SQLとMySQL:関係を理解するSQLとMySQL:関係を理解するApr 16, 2025 am 12:14 AM

SQLとMySQLの関係は、標準言語と特定の実装との関係です。 1.SQLは、リレーショナルデータベースの管理と操作に使用される標準言語であり、データの追加、削除、変更、クエリを可能にします。 2.MYSQLは、SQLを運用言語として使用し、効率的なデータストレージと管理を提供する特定のデータベース管理システムです。

Innodb Redoログの役割を説明し、ログを元に戻します。Innodb Redoログの役割を説明し、ログを元に戻します。Apr 15, 2025 am 12:16 AM

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?説明出力(タイプ、キー、行、追加)で探す重要なメトリックは何ですか?Apr 15, 2025 am 12:15 AM

説明コマンドのキーメトリックには、タイプ、キー、行、および追加が含まれます。 1)タイプは、クエリのアクセスタイプを反映しています。値が高いほど、constなどの効率が高くなります。 2)キーは使用されているインデックスを表示し、nullはインデックスがないことを示します。 3)行はスキャンされた行の数を推定し、クエリのパフォーマンスに影響します。 4)追加の情報を最適化する必要があるというFilesortプロンプトを使用するなど、追加情報を提供します。

説明の一時的なステータスを使用し、それを回避する方法は何ですか?説明の一時的なステータスを使用し、それを回避する方法は何ですか?Apr 15, 2025 am 12:14 AM

Temporaryを使用すると、MySQLクエリに一時テーブルを作成する必要があることが示されています。これは、異なる列、またはインデックスされていない列を使用して順番に一般的に見られます。インデックスの発生を回避し、クエリを書き直し、クエリのパフォーマンスを改善できます。具体的には、expliect出力に使用を使用する場合、MySQLがクエリを処理するために一時テーブルを作成する必要があることを意味します。これは通常、次の場合に発生します。1)個別またはグループビーを使用する場合の重複排除またはグループ化。 2)Orderbyに非インデックス列が含まれているときに並べ替えます。 3)複雑なサブクエリを使用するか、操作に参加します。最適化方法には以下が含まれます。1)OrderbyとGroupB

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい